
Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

INF226 – Software Security

Håkon Robbestad Gylterud

2019–08–21

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

Requirements, assumptions and mechanisms

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

Examples of requirements

Availability of the service.
Capacity
Integrity of data
Authenticity of data
Recoverability

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

Examples of mechanisms

Choice of programming language
Rate limiting
Sanity checks on user inputs
Access control lists
Optimisation of algorithms
Encryption

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

Examples of assumptions

Assumptions pointing towards problems:

User input cannot be trusted to have property X
IP addresses can be spoofed
Computer resources are finite
Programmers write bugs

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

Examples of assumptions

Assumptions pointing towards solutions:

If the program checks the input, we know it has property X
An attacker cannot guess a random 128 bit number.
The semantics of the program.
The type checker is correct.
Internet routing is quite robust.

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

Example

Requirement Mechanism Assumptions

Website should
have a high
uptime.

Server has limited
capacity to process
requests.
An attacker could
send a lot of
request.

Problem: How to prevent legit users experiencing downtime because
of an attacker?

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

Example

Requirement Mechanism Assumptions

Website should
have a high
uptime.

Optimise
request
handling

Server has limited
capacity to process
requests.
An attacker could
send a lot of
request, but not
that many.

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

Example

Requirement Mechanism Assumptions

Website should
have a high
uptime.

IP-based
rate-limiting

Server has limited
capacity to process
requests.
An attacker could
send a lot of
request.
An attacker will
have a limited
number IP
addresses.

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

Example

Requirement Mechanism Assumptions

Website should
have a high
uptime.

Require proof
of work, for
each request.

Server has limited
capacity to process
requests.
An attacker could
send a lot of request.
The work will
acceptable for
normal users, but
not for attackers.

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

Relationship to security

Making requirements = spelling out our intention

Making assumptions = spelling out our knowledge of the
environment

Definition
Software security is the ability of software to function according to
intentions in an adversarial environment.

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

Relationship to security

Making requirements = spelling out our intention

Making assumptions = spelling out our knowledge of the
environment
Definition
Software security is the ability of software to function according to
intentions in an adversarial environment.

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

Vulnerabilities and exploits

Definition
A vulnerability in a software is a circumstance in which the
program fails to be secure (aka. behave according to intentions).

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

Vulnerabilities and exploits

Definition
A vulnerability in a software is a circumstance in which the
program fails to be secure (aka. behave according to intentions).

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

Vulnerabilities and exploits

Definition
An exploit of a vulnerability is a procedure which upon execution
leads to the circumstance described by the vulnerability, thus
demonstrating the insecurity of the program.

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

Vulnerabilities and exploits

Examples:

Broken access control
Buffer overflow vulnerabilities
Injection vulnerabilities
· · ·

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

Remote code execution

The most serious vulnerabilities lead to the attacker being able to
run any code on the victim machine.

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

The Morris worm

In 1988, a worm exploiting a buffer overflow in fingerd spread
across the internet.

A bug in the code made the virus’ hosts grind to a halt.
Internet was partitioned for several days during the clean up.

Even today, twenty years later, buffer-overflow exploits remain some
of the more common vulnerabilities.

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

Buffer overflow

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

Demo/discussion

#include <stdio.h>

int main(int argc, char* argv) {
char buffer[8];
int a = 3;
fgets(buffer, 256 , stdin);
printf("You entered: %s \n", buffer);
printf("and a = %i \n", a);

}

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

The basic problem

Figure 1: Buffer overflows!

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

In code. . .

int main() {
char a[] = "short";
char b[] = "very long";
// Copy b into a
for (int i = 0 ; i < strlen(b) ; ++i)

a[i] = b[i];
printf("%s",a);

}

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

Buffer overread

The simplest mistake one can make in an unsafe language is reading
outside the bounds of a buffer (array).

Example: The “Heartbleed” bug in libssl was caused by not bounds
checking the TLS heart-beat signal before responding.

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

Memory layout of a C program

/------------------\ lower
| | memory
| Text | addresses
(Initialised)
Data
(Uninitialised)

Stack
\------------------/ addresses

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

The call stack

The primary purpose of the call stack is to
store return addresses for function calls:
When a function is called:

a return pointer is pushed on the stack.

When the function is done

the return pointer is popped from the
stack

. . . and program flow is returned to the
caller, following the return pointer.

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

Shell-code

The easiest way to exploit a buffer overflow bug:

Fill the buffer with attack code
Overwrite the return pointer to point into the array.

The attack code often spawns a shell (shell code), which gives the
attacker RCE on the machine.

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

NO-OP sled

Difficulty: Attacker does not know the address of the buffer.

Attacker solution:

Fill most of the buffer with NO-OPs (a
NO-OP sled) and
put shell-code at the end of the buffer.

If the attacker guesses any address in the
NOP part, execution slides to the shell-code.

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

NO-OP sled

Difficulty: Attacker does not know the address of the buffer.

Attacker solution:

Fill most of the buffer with NO-OPs (a
NO-OP sled) and
put shell-code at the end of the buffer.

If the attacker guesses any address in the
NOP part, execution slides to the shell-code.

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

Return Oriented Programming

Return Oriented Programming (ROP) is an exploit technique using
preexisting code in the program or libraries instead of uploaded shell
code.

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

Mitigations

How to prevent catastrophic failure?

Write better C code.
Static analysis.
Stack canaries.
WˆX.
Address space layout randomisation.

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

Stack Canaries

A stack canary is a random integer value
written after the function return pointer on
the stack.
When the function returns the integer value
is checked to detect if it (and thus the
return pointer) has been overwritten since
function call initiated.

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

Address Space Layout Randomisation

Address Space Layout Randomisation (ASLR) refers to the practise
of randomising the layout when allocating memory in the system.

Purpose: Making it difficult for an attacker exploiting a buffer
overflow to guess the location of functions and libraries.

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

Rearranging the stack

To prevent important values, arrays are put before other variables on
the stack.

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

WˆX

Memory allocations can give the allocated memory different
properties:

Writable
Executable

WˆX (write xor executable) means that the operating system
enforces that writable memory cannot be executable.

Prevents loading shell code into writable buffers.
Does not prevent ROP.

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

Prevention

Best practice to avoid buffer overflows:

Use memory safe languages
Use memory-safe abstractions in unsafe languages (say vectors
or smart pointers in C++)
Use the compiler’s abilities
Run static analysers to identify potential bugs

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

Memory safety

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

Memory safety

A programming language is memory safe if each part of the
program is only given access to memory locations for which they are
given explicit permission.

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

Example

The code in a function could access:

Arguments from the caller: f(x,y,z)
Local variables.
Global variables.

Not, for instance, local variables of other functions.

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

Breaking memory safety

Pointer arithmetic
Unconstrained casting
No bounds-check on array access
Unsafe de-allocation (dangling pointers, double free)

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

Languages

We can distinguish between memory safe languages and languages
with direct access to pointer arithmetic.

Memory safe:

Java/C# (bounds check on arrays, runs on virtual machine).
Most scripting languages (Python, JavaScript,. . .)
Most functional languages (Scheme,ML,Haskell,. . .)

Not memory safe:

Assembly
C
C++

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

Achieving memory safety

Automated memory management:

Garbage collection (LISP, Java, Haskell, Go, · · ·)
Resource allocation is initialisation (RAII) and borrows checker
(Rust).

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

Undefined behaviour

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

Undefined behaviour

Undefined behaviour is code which behaviour is unspecified by
the language standard.

Example: In C, dereferencing NULL is undefined behaviour.

Håkon Robbestad Gylterud
INF226 – Software Security

Requirements, assumptions and mechanisms Buffer overflow Memory safety Undefined behaviour

Example of undefined behaviour

From the Linux kernel:

1 unsigned int tun_chr_poll(struct file *file,poll_table *wait){
2 struct tun_file *tfile = file->private_data;
3 struct tun_struct *tun = __tun_get(tfile);
4 struct sock *sk = tun->sk;
5 if (!tun) return POLLERR;
· · ·

}

If tun is NULL line 4. gives undefined behaviour.

A compiler could for example drop line 5, leading to a security
vulnerability. CVE-2009-1897

Håkon Robbestad Gylterud
INF226 – Software Security

	Requirements, assumptions and mechanisms
	Buffer overflow
	Memory safety
	Undefined behaviour

