
Stack smashing SQL injection

INF226 – Software Security

Håkon Robbestad Gylterud

2019–08–26

Håkon Robbestad Gylterud
INF226 – Software Security

Stack smashing SQL injection

Plan for the lecture

Stack smashing example.
SQL injections

What is the problem?
Three solution strategies:

Blacklist (bad)
Quoting/escaping (difficult)
Prepared statements (easy and correct)

Håkon Robbestad Gylterud
INF226 – Software Security

Stack smashing SQL injection

Stack smashing

Håkon Robbestad Gylterud
INF226 – Software Security

Stack smashing SQL injection

Memory layout of a C program

/------------------\ lower
| | memory
| Text | addresses
(Initialised)
Data
(Uninitialised)

Stack
\------------------/ addresses

Håkon Robbestad Gylterud
INF226 – Software Security

Stack smashing SQL injection

The .text section

00000000004005b7 <func>:
4005b7: 55 push %rbp
4005b8: 48 89 e5 mov %rsp,%rbp
4005bb: 48 83 ec 10 sub $0x10,%rsp
4005bf: 48 8b 15 7a 0a 20 00 mov 0x200a7a(%rip),%rdx # 601040 <stdin@@GLIBC_2.2.5>
4005c6: 48 8d 45 f8 lea -0x8(%rbp),%rax
4005ca: be 00 04 00 00 mov $0x400,%esi
4005cf: (· · ·)

0000000000400601 <main>:
400601: 55 push %rbp
400602: 48 89 e5 mov %rsp,%rbp
400605: b8 00 00 00 00 mov $0x0,%eax
40060a: e8 a8 ff ff ff callq 4005b7 <func>
4005cf: (· · ·)

Håkon Robbestad Gylterud
INF226 – Software Security

Stack smashing SQL injection

The call stack

Figure 1: The call stackHåkon Robbestad Gylterud
INF226 – Software Security

Stack smashing SQL injection

Return oriented programming example

#include <stdio.h>

void func () {
char buffer[8];
fgets(buffer, 1024 , stdin);
printf("You entered: %s \n", buffer);

}

void never() {
printf("This function is never called.\n");

}

int main() {
func();
return 0;

}
Håkon Robbestad Gylterud
INF226 – Software Security

Stack smashing SQL injection

SQL injection

Håkon Robbestad Gylterud
INF226 – Software Security

Stack smashing SQL injection

SQL

Structured Query Language (SQL) is the dominating language
for relational databases.
It is a domain specific language.
Queries are contructed using other languages.
Queries are constructed from user input.

Håkon Robbestad Gylterud
INF226 – Software Security

Stack smashing SQL injection

SQL example

SELECT * FROM items WHERE owner='paul' AND
itemname='crysknife'

Result:

id owner itemname location

32 paul crysknife pocket

Håkon Robbestad Gylterud
INF226 – Software Security

Stack smashing SQL injection

Quoting

Problem: Expressions in a language consist of strings. How to
represent strings?

First approximation: 'This is a string'

But what about strings containing the character ' itself?

Håkon Robbestad Gylterud
INF226 – Software Security

Stack smashing SQL injection

Quoting

Problem: Expressions in a language consist of strings. How to
represent strings?

First approximation: 'This is a string'

But what about strings containing the character ' itself?

Håkon Robbestad Gylterud
INF226 – Software Security

Stack smashing SQL injection

Quoting

Figure 2: The general problem of quoting.

Håkon Robbestad Gylterud
INF226 – Software Security

Stack smashing SQL injection

SQL injection

01 string userName = ctx.getAuthenticatedUserName();
02 string query = "SELECT * FROM items WHERE owner = '"

+ userName + "' AND itemname = '" + ItemName.Text + "'";
03 sda = new SqlDataAdapter(query, conn);
04 DataTable dt = new DataTable();
05 sda.Fill(dt);

Håkon Robbestad Gylterud
INF226 – Software Security

Stack smashing SQL injection

SQL injection

02 string query = "SELECT * FROM items WHERE owner = '"
+ userName + "' AND itemname = '" + ItemName.Text + "'";

What happens if ItemName.Text comes from user input, and the
user inputs the following string?

name' OR 'a'='a

Håkon Robbestad Gylterud
INF226 – Software Security

Stack smashing SQL injection

SQL injection

02 string query = "SELECT * FROM items WHERE owner = '"
+ userName + "' AND itemname = '" + ItemName.Text + "'";

What happens if ItemName.Text comes from user input, and the
user inputs the following string?

name' OR 'a'='a

Håkon Robbestad Gylterud
INF226 – Software Security

Stack smashing SQL injection

SQL injection

What if the input was the following?

name'; DELETE FROM items; --

Håkon Robbestad Gylterud
INF226 – Software Security

Stack smashing SQL injection

Preventing SQL injections

First attempt: This is an input sanitation problem. We must
blacklist some characters (such as ' and --).

Håkon Robbestad Gylterud
INF226 – Software Security

Stack smashing SQL injection

Preventing SQL injections

$id = $_COOKIE["mid"];
if (preg_match("/\'/") {

fail();
} else {

mysql_query("SELECT MessageID, Subject
FROM messages WHERE MessageID = $id");

...
}

Håkon Robbestad Gylterud
INF226 – Software Security

Stack smashing SQL injection

Preventing SQL injections

Hyphens, single quotes and semi-colons are common in natural
language.
Blacklists most often have loop holes.
Makes for fun CTF challenges, but not great security.

Håkon Robbestad Gylterud
INF226 – Software Security

Stack smashing SQL injection

Preventing SQL injections

Second attempt: We must turn all single quotes into double ',
quotes '', which escapes them.

(. . . or into \', which is another way to escape it.)

Håkon Robbestad Gylterud
INF226 – Software Security

Stack smashing SQL injection

Escaping data for SQL queries

It is not enough to escape single quotes!

A single quote in a string is represented by ''
Thus we can try to double all single quotes in data.
But this can be worked around by attacker:

\' becomes \'' (an escaped quote followed by a quote)

Notoriously difficult to get the escaping right!

Håkon Robbestad Gylterud
INF226 – Software Security

Stack smashing SQL injection

SQL injection

String query
= "SELECT * FROM Users WHERE email='"
+ authenticatedUser.getEmail() + "';"

try {
Statement statement = con.createStatement();
ResultSet result = statement.executeQuery(query);
while (result.next()) {

// · · ·
}

} catch (SQLException e) {// · · ·

Then comes a user with e-email address: eve'or''!='@foo.com

Håkon Robbestad Gylterud
INF226 – Software Security

Stack smashing SQL injection

Prepared statements

A better way to secure against SQL injection:

A prepared statement is a statement with placeholders (?)
where the user data will go later.
Is sent to the SQL server in advance.

Håkon Robbestad Gylterud
INF226 – Software Security

Stack smashing SQL injection

Example: In JDBC

String query
= "SELECT * FROM Users WHERE email=? ;"

try {
PreparedStatement prepared = con.prepareStatement(query);
prepared.setString(authenticatedUser.getEmail());
ResultSet result = statement.executeQuery(query);
while (result.next()) {

// · · ·
}

} catch (SQLException e) {// · · ·

Håkon Robbestad Gylterud
INF226 – Software Security

Stack smashing SQL injection

Prepared statements

Prevents SQL injections.
Allows type-checking of arguments.
Could give better performance if a statement is executed many
times.

Håkon Robbestad Gylterud
INF226 – Software Security

Stack smashing SQL injection

Prepared statements

String query = "INSERT INTO order (userid,itemid,address) "
+ "VALUES(" + currentUser + "," + itemId + ","

+ deliveryAddress ");";

PreparedStatement stmt = connection.prepareStatement(query);
stmt.execute();

Håkon Robbestad Gylterud
INF226 – Software Security

Stack smashing SQL injection

Haskell sqlite-simple

There are several DB libraries for Haskell (ex: HDBC).
Highlighting sqlite-simple because it gives type safe
protection from most SQL injection pitfals.

Håkon Robbestad Gylterud
INF226 – Software Security

Stack smashing SQL injection

Haskell sqlite-simple

{-# LANGUAGE OverloadedStrings #-}

(· · ·)
do

result <- query conn
"SELECT * FROM user WHERE name= ? AND age > ?"
("Boris" :: String, 37 :: Int)

(· · ·)

query :: (ToRow q, FromRow r) => Connection -> Query -> q -> IO [r]

Håkon Robbestad Gylterud
INF226 – Software Security

Stack smashing SQL injection

Haskell sqlite-simple

{-# LANGUAGE OverloadedStrings #-}

(· · ·)
do

result <- query conn
"SELECT * FROM user WHERE name= ? AND age > ?"
("Boris" :: String, 37 :: Int)

(· · ·)

query :: (ToRow q, FromRow r) => Connection -> Query -> q -> IO [r]

Håkon Robbestad Gylterud
INF226 – Software Security

Stack smashing SQL injection

Haskell sqlite-simple

This would be ill-typed (i.e. not compile):

{-# LANGUAGE OverloadedStrings #-}

(· · ·)
do

result <- query conn
"SELECT * FROM user WHERE name="
++ name ++ " AND age > " ++ age

(· · ·)

Because "SELECT * FROM user WHERE name=" has type Query
and cannot be concatenated with strings.

Håkon Robbestad Gylterud
INF226 – Software Security

Stack smashing SQL injection

Testing

The places in the code which cause SQL injections have a clear
signature:

String concatenation on a string which ends up in a query.

Static tools (such as SonarQube) will detect this.

Håkon Robbestad Gylterud
INF226 – Software Security

Stack smashing SQL injection

Conclusion

The underlying problem with SQL:

Confusion between code and data.
Strings are used to represent both:

Data which goes into the database.
Queries and code to be executed on the database.

Languages with type systems can do better!

When designing a program always ask: Is String the correct
representation of this data?

Håkon Robbestad Gylterud
INF226 – Software Security

Stack smashing SQL injection

Other injection attacks

SQL is not the only plase this confusion happens:

Buffer overflows
OS command injection
eval injection in scripting languages (ex: Python)
Cross-site scripting

Håkon Robbestad Gylterud
INF226 – Software Security

Stack smashing SQL injection

OS command injection

PHP example:

$userName = $_POST["user"];
$command = 'ls -l /home/' . $userName;
system($command);

Now Maleroy enters ;rm -rf / in the user field:

$command = 'ls -l /home/' . $userName;

Håkon Robbestad Gylterud
INF226 – Software Security

Stack smashing SQL injection

OS command injection

PHP example:

$userName = $_POST["user"];
$command = 'ls -l /home/' . $userName;
system($command);

Now Maleroy enters ;rm -rf / in the user field:

$command = 'ls -l /home/' . $userName;

Håkon Robbestad Gylterud
INF226 – Software Security

Stack smashing SQL injection

References

OWASP Top 10: A1
CWE-89
JDBC Prepared Statements

Håkon Robbestad Gylterud
INF226 – Software Security

https://www.owasp.org/index.php/Top_10-2017_A1-Injection
https://cwe.mitre.org/data/definitions/89.html
https://docs.oracle.com/javase/tutorial/jdbc/basics/prepared.html

	Stack smashing
	SQL injection

