
Trusting trust Diverse double compiling Vulnerabilities CVE

INF226 – Software Security

Håkon Robbestad Gylterud

2019–09-02

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

STRIDE and SQL injection

Spoofing: Transmissions with intentially mislabeled source.
Tampering: Modification of persistent data or data in transport
Repudiation: Denial of having performed unauthorized operations,
in systems where these operations cannot be traced.
Information disclosure: Access to data in an unauthorized fasion.
Denial of Service: Rendering a service unaccessible to intended
users.
Elevation of priviledge: Non-priviledged users gaining access to
priviledged operations and data.

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

Trusting trust

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

Trusting trust

Thompson’s argument is a reductio ad absurdum of the statement:
It is sufficient to inspect the source code of a program to
determine its behavior.

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

Trusting a program from source

To trust a program after reading the source code we must
trust the compiler to compile correctly.
To trust the compiler we can read the source code, but without
trusting the compiler we cannot trust the resulting executable.

Conclusion: to trust the compiler we must trust the compiler, which
is circular.

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

Compiler bootstrapping

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

Compiler bootstrapping

In the article, Thompson presents idealised code from a compiler:

c = next();
if(c != '\\')

return c;
c = next();
if (c == '\\')

return '\\';
if (c == 'n')

return '\n';

Question: How can this code work, when the ASCII values it is
supposed to produce (i.e. ‘\n’ is 10), is not in the source?

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

Compiler bootstrapping

In the article, Thompson presents idealised code from a compiler:

c = next();
if(c != '\\')

return c;
c = next();
if (c == '\\')

return '\\';
if (c == 'n')

return '\n';

Question: How can this code work, when the ASCII values it is
supposed to produce (i.e. ‘\n’ is 10), is not in the source?

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

The deceptive compiler (1st level)

A compiler could try to recognise that it is compiling the login
command of the OS:

if(match("pattern of login")) {
compile("backdoor");

}

. . . and then compile in a back door.

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

The deceptive compiler (2nd level)

To avoid detection by reading compiler source code: Recognise
when you are compiling the compiler, and write in the login
modification, in the same way.

if(match("pattern of login")) {
compile("backdoor");

}
if(match("pattern of compiler")) {

compile("login backdoor inserter");
}

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

Questions

1 Are interpreted languages (such as python) immune to this
threat?

2 What other programs could have a similar (linchpin) rôle w.r.t.
OS security?

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

Diverse double compiling

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

Functional equivalence
Two programs, X and Y , are functionally equivalent if the output
of X is the same as the output of Y when they are given the same
input.

Figure 1: Functional equivalence

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

Functional equivalence

Two programs, X and Y , are functionally equivalent if the output
of X is the same as the output of Y when they are given the same
input.

Question: Can an implementation of Bubble Sort be functionally
equivalent to an implementation of Quck Sort?

Examples

1 If we compile a program with two different compilers for the
same language, the result will (mostly) be two functionally
equivalent programs.

2 Two compilers for the same language need not be functionally
equivalent.

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

Functional equivalence

Two programs, X and Y , are functionally equivalent if the output
of X is the same as the output of Y when they are given the same
input.
Question: Can an implementation of Bubble Sort be functionally
equivalent to an implementation of Quck Sort?

Examples

1 If we compile a program with two different compilers for the
same language, the result will (mostly) be two functionally
equivalent programs.

2 Two compilers for the same language need not be functionally
equivalent.

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

Functional equivalence

Two programs, X and Y , are functionally equivalent if the output
of X is the same as the output of Y when they are given the same
input.
Question: Can an implementation of Bubble Sort be functionally
equivalent to an implementation of Quck Sort?

Examples

1 If we compile a program with two different compilers for the
same language, the result will (mostly) be two functionally
equivalent programs.

2 Two compilers for the same language need not be functionally
equivalent.

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

A detection strategy by Wheeler

Goal: We want to test a compiler A. Want to detect possible bugs
“learned” by the compiler (in the sense of Thompson)

Requires: An independent compiler T (non-collusion betewen
compiler A and compiler T ).

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

A detection strategy by Wheeler

Goal: We want to test a compiler A. Want to detect possible bugs
“learned” by the compiler (in the sense of Thompson)
Requires: An independent compiler T (non-collusion betewen
compiler A and compiler T ).

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

Naming

Let SA be the source code of compiler A and EA its executable.
Let T be a compiler independent of A, with executable ET .

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

Diverse double compiling

1 Compile SA using EA to get an executable X .
2 Compile SA using ET to get an executable Y .
3 Compile SA using X to get an executable V .
4 Compile SA using Y to get an executable W .
5 Compare V and W bitwise.

Observe: X and Y will be different binaries, but functionally
equivalent.

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

Diverse double compiling (Step 1 & 2)

Figure 2: Step 1 & 2 of DDC

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

Diverse double compiling (Step 3, 4 and 5)

Figure 3: Step 3, 4 and 5 of DDC

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

Conclusions

Should a ‘trusting trust’ type attack be part of our threat
model?
Thompson argues that at some point one must trust the people
behind the software.
Wheeler’s diverse double-compiling strategy gives guarantees
under some assumptions (non-collusion).

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

Vulnerabilities

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

OWASP Top 10

A1:2017-Injection
A2:2017-Broken Authentication
A3:2017-Sensitive Data Exposure
A4:2017-XML External Entities (XXE)
A5:2017-Broken Access Control
A6:2017-Security Misconfiguration
A7:2017-Cross-Site Scripting (XSS)
A8:2017-Insecure Deserialization
A9:2017-Using Components with Known Vulnerabilities
A10:2017-Insufficient Logging&Monitoring

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

Vulnerabilities and exploits

Definition
A vulnerability is a weakness in the computational logic
(e.g., code) found in software and some hardware compo-
nents (e.g., firmware) that, when exploited, results in a
negative impact to confidentiality, integrity, OR availability.

(From mitre.org)

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

Disclosure

When a vulnerability is found, one has a choice:

Should the vulnerability be publicly disclosed?

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

Disclosure

When disclosing vulnerabilities further questions arise:

How much detail to include?
Should an exploit be included? (if available)
Should there be an embargo period?

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

Disclosure

There is a spectrum of different stances:

No disclosure: No details should be made public.
Coordinated disclosure: Details can be disclosed after fixes
made and embargo lifted.
Full-disclosure: full details should be publicly disclosed, and
arguing against an embargo.

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

CVE

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

CVE

Common Vulnerabilities and Exposures (CVE) is a database of
software vulnerabilities. Maintained by The Mitre Corporation in
USA.
The list has entries consisting of:

A unique number (CVE–YYYY–XXXX) identifying the
vulnerability
A desciption
At least one public reference

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

CVE example
ID: CVE-2018-7492

Description: A NULL pointer dereference was found in the
net/rds/rdma.c __rds_rdma_map() functionin the Linux kernel
before 4.14.7 allowing local attackers to cause a system panic and a
denial-of-service, related to RDS_GET_MR and
RDS_GET_MR_FOR_DEST.

References:

MISC:http://git.kernel.org/· · · commit/?id=f3069c6d33· · ·
URL:https://xorl.wordpress.com/· · · /linux-kernel-rdma-null-
pointer-dereference/
DEBIAN:DSA-4187
· · ·

Håkon Robbestad Gylterud
INF226 – Software Security

http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=f3069c6d33f6ae63a1668737bc78aaaa51bff7ca
https://xorl.wordpress.com/2017/12/18/linux-kernel-rdma-null-pointer-dereference/
https://xorl.wordpress.com/2017/12/18/linux-kernel-rdma-null-pointer-dereference/


Trusting trust Diverse double compiling Vulnerabilities CVE

CVE number assignment

Assigning the CVE numbers is taken care of by the CVE
Numbering Authorities (CNAs), which each have different
scopes. These include:

The Mitre Corporation (Primary CNA)
Distributed Weakness Filing Project (For open-source projects)
Many corporations (Google,Microsoft,Intel,Netflix,· · · )

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

What is CVE used for?
CVE allows referencing vulnerabilities accross systems:

Easier than referencing product/version/description:
Easy: CVE-2018-7492
Difficult: “That NULL pointer dereference in net/rds/rdma.c in
Linux before 4.14.7.”

Easy to track vulnerability fixes:
From links we quickly find which Debian or Ubuntu packages
contain the fixes.

Provides a quick way to look up vulnerabilities for a given
piece of software.

CVE numbers are often reported by vulnerability scanners which
finger-print running services.

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

CVSS

Common Vulnerability Scoring System (CVSS) is a system for
assigning a score to a vulnerability.

Includes three kinds of metrics:

Base metrics, intrinsic properties
Temporal metrics, changes over the vulnerability life-time
Environmental metrics, specific to the environment of the
software.

CVSS results in sevaral scores on a scale from 0–10, based on a
vector of metrics.

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

CVSS

Two different versions of CVSS are commonly used:

Version 2
Version 3

Link to the specification of version 3 on syllabus page.

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

Base metrics in CVSS Version 2

Access vector:†
Local
Adjacent network
Network

Attack complexity (High/Medium/Low)
Authentication (Multiple/Single/None)

†: Version 3 adds “physical”

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

Impact metrics in CVSS Version 2

Rated on a scale of None/Partial/Complete impact:

Confidentiality
Integrity
Availability

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

Temporal metrics in CVSS Version 2

The following metrics change over time:

Exploitability
Remediation level
Report confidence

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

Exploitability

Exploitability is measured on a the scale:

Unproven
Proof-of-concept
Functional
High

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

Remediation level

Remediation level is measured on the scale

Official fix
Temporary fix
Workaround
Unavailable

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

Report confidence

Report confidence is measured on the scale

Unconfirmed
Uncorroborated
Confirmed

Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

CVSS example

Figure 4: CVE-2018-7492
Håkon Robbestad Gylterud
INF226 – Software Security



Trusting trust Diverse double compiling Vulnerabilities CVE

Next time:

CWE
Tools

Håkon Robbestad Gylterud
INF226 – Software Security


	Trusting trust
	Diverse double compiling
	Vulnerabilities
	CVE

