
Zed Attack Proxy SonarQube Access control Access control models

INF226 – Software Security

Håkon Robbestad Gylterud

2019–09-09

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

The second mandatory assignment

Goal: Analyse the security of a web-application

Method:

Describe security model
Security tools (SonarQube, ZAP)
Manual inpection

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

Today

Quick demonstration of the tools.
Models of access control

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

Zed Attack Proxy

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

SonarQube

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

Access control

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

Access control

On a multi-user system access control decides which users can

read/write to objects (files, databases tables, · · · )
perform operations (start processes, allocate memory, · · · )
grant/revoke access

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

Mandatory vs. discretionary

In a Mandatory Access Control (MAC) system, the access control
policies are fixed by a central authority.

In a Discretionary Access Control (DAC) system, a user who has
access to an object can specify permissions for it or transfer acess to
another actor.

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

Examlpes of mandatory access control

Modern operating systems have mandatory access control on
resources such as CPU, memory and storage.

In additon there are systems for introducing more MAC based
secruity:

SELinux
Linux Security Modules (AppArmor)
Mandatory Integrity Control on Windows (Extending ACLs)
Language based mechanisms (e.g. Java Security Manager)

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

Examlpes of mandatory access control

Modern operating systems have mandatory access control on
resources such as CPU, memory and storage.

In additon there are systems for introducing more MAC based
secruity:

SELinux
Linux Security Modules (AppArmor)
Mandatory Integrity Control on Windows (Extending ACLs)
Language based mechanisms (e.g. Java Security Manager)

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

Examples of discretionary access control

File systems
E-mail
WIFI passwords
· · ·

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

Access control models

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

Mathematical models of access control

Bell—LaPadula model (1973): Security levels “Top
sectret”–“Unclassified”.
Biba model (1975): Focussed on data integrity.
Graham—Denning model: Concerned with object creation and
ownership

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

Access control models

We will focus on three common access control models:

Access control lists
Rôle based access control
Capability based access control

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

Access control lists

In a system with access control lists, permissions are assigned to
objects:

Each object has a list of permissions assigned to different users.

Typically (but not always), the access control list specifies an owner
og the object.

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

Access control lists

In a system with access control lists, permissions are assigned to
objects:

Each object has a list of permissions assigned to different users.

Typically (but not always), the access control list specifies an owner
og the object.

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

Access control lists

Figure 1: Access control listsHåkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

Example

In Unix-like systems:

Subjects: processes
Objects: files, sockets, processes, · · ·

Permissions are structured according to users and groups.

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

Users and groups

The system is divided into users and groups, identified by numbers:

User ID (UID)
Group ID (GID)

Special UID: 0 (root). Can ignore most permission restrictions.

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

Processes

When a program is run it is assigned a Process ID (PID).

Processes are prevented from directly accessing each other’s
memory.

In addtion, the process is assigned to a specific UID and GID.
(Usually inherited from parent process)

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

Files

Every file has:

Owner UID
Owner GID

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

File permissions

There are three kinds of file permissions:

Read
Write
Execute

This gives a matrix

W�P read write execute

user � � �
group � � �
other � � �

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

Example

W�P read write execute octal

user 1 1 0 6 = 41 + 21 + 10
group 1 0 0 4
other 0 0 0 0

Commandline: chmod 640 filename

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

Executables (SUID/SGID)

In additions to permissions, there are special flags:

Set UID (SUID):
When executed, the UID of the process is set to file owner.

Set GID (SGID):
When executed, the GID of the process is set to file group.

Sticky-bit:
File can only be renamed/deleted by root or owner

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

SUID usage

SUID bits can be used to give a process higher or lower priviledges.

Warning: If a user can trick root into owning a specially crafted
SUID program, user gains admin priviledges.

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

Directory permissions

Directories also have read, write and execute permissions.

Read: list the content of the directory
Write: create, rename and delete from directory
Execute: Entering directory and access files

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

Question

Why can only root change ownership of a file?

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

Question

A user, bob, wants to share his file /home/bob/secret with user
alice, but does not want to give any other users access.

How can he arrange this?

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

Rôle based access control

In a rôle based access control (RBAC) system, a set of rôles
abstract the permissions from users.

We have sets P (permissions), R (roles) and U (users):

RolePerm ⊆ R × P specifies permissions for rôle.
UserRoles ⊆ U × P

Actions are always performed by a rôle. To change rôle user must
reauthenticate.

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

Rôle based access control

In a rôle based access control (RBAC) system, a set of rôles
abstract the permissions from users.

We have sets P (permissions), R (roles) and U (users):

RolePerm ⊆ R × P specifies permissions for rôle.
UserRoles ⊆ U × P

Actions are always performed by a rôle. To change rôle user must
reauthenticate.

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

Rôle based access control

In a rôle based access control (RBAC) system, a set of rôles
abstract the permissions from users.

We have sets P (permissions), R (roles) and U (users):

RolePerm ⊆ R × P specifies permissions for rôle.
UserRoles ⊆ U × P

Actions are always performed by a rôle. To change rôle user must
reauthenticate.

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

Rôle based access control

Figure 2: Rôle based access control

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

Example of RBAC

U = {alice,bob} and
R = {doctor, patient}
P = {writePerscription, withdrawMedicine}
RolePerm = {(doctor,writePerscription), (patient,
withdrawMedicine)}
UserRoles =
{(alice,doctor),(bob,patient),(alice,patient)}

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

Capability based access control

In cabability based access control, users have capabilities.

A capability consists of:

A reference to an object
A set of permissions for that object

A capability is used whenever a resource is accessed.

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

Capability based access control

Figure 3: Capability based access controlHåkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

File descriptors

A file descriptor is a capability of accessing a file.

Each process has its own file-descriptor table.

Not only for accessing files:

Files
stdout/stdin/stderr
pipes (inter-process communication)
sockets (network access)

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

File descriptors

A file descriptor is a capability of accessing a file.

Each process has its own file-descriptor table.

Not only for accessing files:

Files
stdout/stdin/stderr
pipes (inter-process communication)
sockets (network access)

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

File descriptors

The OS checks permissions when opening a file and creating the
descriptor.

File descriptors can be transferred between processes
The recipient process does not need to have permission to
access the file to use the file-descriptor

This gives a fine-grained way to transfer capabilities between
processes.

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

Example:

An HTTP server wants:

to bind to port 80 (requires root),
but processing HTTP request as root is dangerous

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

Priviledge dropping

1 Roots starts the httpd-program with UID=0.
2 httpd creates a socket and bind it to port 80.
3 httpd creates a child process with a less priviledged UID.
4 httpd hands the socket file descriptor to the child process
5 Child process handles the HTTP requests.

Håkon Robbestad Gylterud
INF226 – Software Security


	Zed Attack Proxy
	SonarQube
	Access control
	Access control models

