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The second mandatory assignment

Goal: Analyse the security of a web-application

Method:

Describe security model
Security tools (SonarQube, ZAP)
Manual inpection

Håkon Robbestad Gylterud
INF226 – Software Security



Zed Attack Proxy SonarQube Access control Access control models

Today

Quick demonstration of the tools.
Models of access control
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Zed Attack Proxy
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SonarQube
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Access control
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Access control

On a multi-user system access control decides which users can

read/write to objects (files, databases tables, · · · )
perform operations (start processes, allocate memory, · · · )
grant/revoke access
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Mandatory vs. discretionary

In a Mandatory Access Control (MAC) system, the access control
policies are fixed by a central authority.

In a Discretionary Access Control (DAC) system, a user who has
access to an object can specify permissions for it or transfer acess to
another actor.
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Examlpes of mandatory access control

Modern operating systems have mandatory access control on
resources such as CPU, memory and storage.

In additon there are systems for introducing more MAC based
secruity:

SELinux
Linux Security Modules (AppArmor)
Mandatory Integrity Control on Windows (Extending ACLs)
Language based mechanisms (e.g. Java Security Manager)
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Examples of discretionary access control

File systems
E-mail
WIFI passwords
· · ·
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Access control models
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Mathematical models of access control

Bell—LaPadula model (1973): Security levels “Top
sectret”–“Unclassified”.
Biba model (1975): Focussed on data integrity.
Graham—Denning model: Concerned with object creation and
ownership
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Access control models

We will focus on three common access control models:

Access control lists
Rôle based access control
Capability based access control
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Access control lists

In a system with access control lists, permissions are assigned to
objects:

Each object has a list of permissions assigned to different users.

Typically (but not always), the access control list specifies an owner
og the object.
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Access control lists

Figure 1: Access control listsHåkon Robbestad Gylterud
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Example

In Unix-like systems:

Subjects: processes
Objects: files, sockets, processes, · · ·

Permissions are structured according to users and groups.
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Users and groups

The system is divided into users and groups, identified by numbers:

User ID (UID)
Group ID (GID)

Special UID: 0 (root). Can ignore most permission restrictions.
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Processes

When a program is run it is assigned a Process ID (PID).

Processes are prevented from directly accessing each other’s
memory.

In addtion, the process is assigned to a specific UID and GID.
(Usually inherited from parent process)
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Files

Every file has:

Owner UID
Owner GID
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File permissions

There are three kinds of file permissions:

Read
Write
Execute

This gives a matrix

W�P read write execute

user � � �
group � � �
other � � �
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Example

W�P read write execute octal

user 1 1 0 6 = 41 + 21 + 10
group 1 0 0 4
other 0 0 0 0

Commandline: chmod 640 filename
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Executables (SUID/SGID)

In additions to permissions, there are special flags:

Set UID (SUID):
When executed, the UID of the process is set to file owner.

Set GID (SGID):
When executed, the GID of the process is set to file group.

Sticky-bit:
File can only be renamed/deleted by root or owner
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SUID usage

SUID bits can be used to give a process higher or lower priviledges.

Warning: If a user can trick root into owning a specially crafted
SUID program, user gains admin priviledges.
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Directory permissions

Directories also have read, write and execute permissions.

Read: list the content of the directory
Write: create, rename and delete from directory
Execute: Entering directory and access files
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Question

Why can only root change ownership of a file?
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Question

A user, bob, wants to share his file /home/bob/secret with user
alice, but does not want to give any other users access.

How can he arrange this?
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Rôle based access control

In a rôle based access control (RBAC) system, a set of rôles
abstract the permissions from users.

We have sets P (permissions), R (roles) and U (users):

RolePerm ⊆ R × P specifies permissions for rôle.
UserRoles ⊆ U × P

Actions are always performed by a rôle. To change rôle user must
reauthenticate.
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Rôle based access control

Figure 2: Rôle based access control
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Example of RBAC

U = {alice,bob} and
R = {doctor, patient}
P = {writePerscription, withdrawMedicine}
RolePerm = {(doctor,writePerscription), (patient,
withdrawMedicine)}
UserRoles =
{(alice,doctor),(bob,patient),(alice,patient)}
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Capability based access control

In cabability based access control, users have capabilities.

A capability consists of:

A reference to an object
A set of permissions for that object

A capability is used whenever a resource is accessed.
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Capability based access control

Figure 3: Capability based access controlHåkon Robbestad Gylterud
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File descriptors

A file descriptor is a capability of accessing a file.

Each process has its own file-descriptor table.

Not only for accessing files:

Files
stdout/stdin/stderr
pipes (inter-process communication)
sockets (network access)
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File descriptors

The OS checks permissions when opening a file and creating the
descriptor.

File descriptors can be transferred between processes
The recipient process does not need to have permission to
access the file to use the file-descriptor

This gives a fine-grained way to transfer capabilities between
processes.
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Example:

An HTTP server wants:

to bind to port 80 (requires root),
but processing HTTP request as root is dangerous
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Priviledge dropping

1 Roots starts the httpd-program with UID=0.
2 httpd creates a socket and bind it to port 80.
3 httpd creates a child process with a less priviledged UID.
4 httpd hands the socket file descriptor to the child process
5 Child process handles the HTTP requests.
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