
Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

INF226 – Software Security

Håkon Robbestad Gylterud

2019–09-11

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

Recap: Access control models

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

Access control

Access control has different aspects:

Physical
Logical
Cryptographic
Social

We are currently studying the logical aspects of access control.

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

MAC vs DAC

Mandatory access control: Central, non-tranferrable access.

Example: Classified documents.
Example: Disk quotas.

Discretionary access control: At least some priviledges are
transferrable.

Example: File owners can decide who can read and write to the
file.
Example: Open file descriptors can be tranferred to other
processes.

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

Models of access control

We have seen three models of access control:

Access control lists
Rôle based access control
Capability based access control

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

Access control lists

Figure 1: Access control listsHåkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

Rôle based access control

Figure 2: Rôle based access control

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

Capability based access control

Figure 3: Capability based access controlHåkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

Operating system and application security

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

Running example: Web server

Let us imagine that we are designing a web server.

Handles a lot of untrusted user input.
Is written in C, or runs CGI binaries written in C.

A database will be running on the same server, and we worry that a
breach in the web server could compromise the database.

What preventive measures are available from the operating system?

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

Threat model: Defence in depth

Assumption: Some process on the system is misbehaving.

Example: A buffer overflow in a service has caused an attacker
to gain remote code execution.

Requirement: Limit the impact of this break-in.

Mechanisms: ?

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

Threat model: Defence in depth

Assumption: Some process on the system is misbehaving.

Example: A buffer overflow in a service has caused an attacker
to gain remote code execution.

Requirement: Limit the impact of this break-in.

Mechanisms: ?

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

Threat model: Defence in depth

Assumption: Some process on the system is misbehaving.

Example: A buffer overflow in a service has caused an attacker
to gain remote code execution.

Requirement: Limit the impact of this break-in.

Mechanisms: ?

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

Operating systems

What is the rôle of the operating system?

Orchestrate processes (software)
Provide an abstract interface for hardware (drivers)

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

Operating systems

What is the rôle of the operating system?

Orchestrate processes (software)
Provide an abstract interface for hardware (drivers)

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

System calls

Programs can communicate with the OS through system calls,
which interrupts the program and returns the control to the OS.

Examples

The system call open opens (or creates) a file and returns a file
descriptor to the program.
The system calls socket and connect creates a network
connect and returns a file descriptor to the program.
The system call write writes bytes to a given file descriptor.

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

OS level priviledge separation
On the OS level individual processes have different protections for
different resources:

Memory:
Virtual memory mapping
Limits

CPU
Scheduling priority

File system:
Permissions
chroot or other visibility restrictions
quotas

Open files/sockets/network connections:
file descriptors
limits

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

Memory protection

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

Virtual memory mapping
Not primarily for security: Letting programs use
the physical memory addresses is really
inconvenient.

With virtual paged memory:

Each program gets their own virtual address
space.
Memory locations not decided at compile
time.
Memory fragmentation hidden from
programs.
Easy to page out to swap (store memory on
hard drive)

But, as a consequence: processes cannot directly
address or access the memory of other processes.

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

Virtual memory mapping
Not primarily for security: Letting programs use
the physical memory addresses is really
inconvenient.
With virtual paged memory:

Each program gets their own virtual address
space.
Memory locations not decided at compile
time.
Memory fragmentation hidden from
programs.
Easy to page out to swap (store memory on
hard drive)

But, as a consequence: processes cannot directly
address or access the memory of other processes.

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

Virtual memory mapping

Exceptions:

1 Processes can allocate shared memory.
2 A process can attach them selves as a debugger to another

process.

Number 2 is allowed by default in Linux for processes with the same
UID. (See ptrace(2) manual page)

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

Example

Question: What do we need to do in order to prevent the
compromised web server from accessing the memory of the
database?

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

File system abstraction

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

The unix file system

The unix file system provides a unified way to access file systems
based in the root directory /

Directories group the files into logical parts:

/bin: programs
/sbin: administrative programs
/etc: system configuration
/dev: virtual file system of devices
/home: individual user’s home folders
/tmp: temporary files
· · ·

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

Chroot

The operating system can restrict process file acess by changing
the root dir to a different directory (chroot).

Example: After chroot /home/bar the path /bin/foo
translates to /home/bar/bin/foo.
Note: a UID=0 (root) process easily access resources outside
the new root.

This provides a form of file system virtualisation.

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

Chroot

Usefulness of chroot is limited by the restriction that only root
can do it.

Imagine that a user could set up a root folder with a forged
/etc/passwd and /etc/shadow.
Then they could fool a SUID program (such as su) to give
them a UID=0 shell.

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

Chroot

Chroot is not a complete sandboxing solution, it does not:

Restrict network access
Restrict usage of other system resources
Prevent communication with/taking over other processes

Compare to:

Plan9’s concept of per process file system (approx. 1990)
FreeBSD’s jail(8) or Docker.
OpenBSD’s new unveil(2) (2018, work-in-progress)

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

Example

How can we use chroot to help prevent the web-server from
accessing the database?

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

System call restrictions

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

System calls
Linux has more than three hundred system calls:

accept(2) 2.0 See notes on socketcall(2)
accept4(2) 2.6.28
access(2) 1.0
acct(2) 1.0
add_key(2) 2.6.10
adjtimex(2) 1.0
alarm(2) 1.0
alloc_hugepages(2) 2.5.36 Removed in 2.5.44
arch_prctl(2) 2.6 x86_64, x86 since 4.12
bdflush(2) 1.2 Deprecated (does nothing)

since 2.6
bind(2) 2.0 See notes on socketcall(2)
bpf(2) 3.18
brk(2) 1.0
cacheflush(2) 1.2 Not on x86
capget(2) 2.2
capset(2) 2.2
chdir(2) 1.0

chmod(2) 1.0
chown(2) 2.2 See chown(2) for

version details
chown32(2) 2.4
chroot(2) 1.0

· · ·Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

OpenBSD pledge

System calls form a huge surface for an attacker to work with.

Difficult to restrict which system calls are allowed by a process, but
OpenBSD’s pledge gives such a mechanism:

Calling pledge with a list of system call groups restrics the
process from accessing most system calls not on the list.
Further restrictions can be made at a later point.

Compare: seccomp for Linux or capsicum for FreeBSD.

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

OpenBSD pledge example

The openBSD httpd has pledge in server.c:

419 if (pledge("stdio rpath inet unix recvfd", NULL) == -1)
420 fatal("pledge");

Would this help prevent the compromised web server from
compromising the database?

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

OpenBSD pledge example

The openBSD httpd has pledge in server.c:

419 if (pledge("stdio rpath inet unix recvfd", NULL) == -1)
420 fatal("pledge");

Would this help prevent the compromised web server from
compromising the database?

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

Example summary

What preventive measures do we have so far?

What kind of threats to they prevent?

What assumptions are they based on?

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

OS virtualisation

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

Linux kernel namespaces

Kernel namespaces allow processes to be grouped so that each
group has:

- individual filesystem mount tables
- individual process tables
- individual network stack
- individual UID tables

More kinds of namespaces are being added to Linux.

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

Virtualisation

In stead of/in addition to manually separate priviledges using OS
mechanisms, we can:

Abstract away the specific operating system systematically:
Operating system virtualization (Docker or FreeBSD
jail(8))

Abstrace away the specific hardware:
Full virtualization: can run a different ISA
Paravirtualization: Runs the CPU instructions natively.

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

Containers

Docker is an open source OS-virtualisation program which runs
software packages called containers.

Containers are systematically separated using OS mechanisms.
Containers are templated by images:

An image programmatically constructs a containers.
Provides a predictable environment for the processes in the
container.
Popular way to deploy web-services

Container construction and administration through the daemon
dockerd

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

Separation mechanisms

Docker is based on Linux’ OS-level separation mechanisms:

Chroot
namespaces which gives each container:

individual mount tables
individual process tables
individual network stack
individual UID tables

cgroups which limits the resource use of each container

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

Container capabilities

Each container has a specific set of capabilities1:

An abstraction of the OS level restrictions
Capabilities are whitelisted (not black listed)

1Not the same kinds of capabilities that we previously discussed
Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

Docker security

Docker security can be decomposed into:

Security of the underlying OS level separation mechanisms
The dockerd daemon attack surface.
Security of the container configuration.

Attack scenario: An attacker takes over a process running in a
container.

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

A container is not a VM

While often branded as lightweight VMs, containers are
fundamentally different from VMs:

Example: A container with CAP_SYS_TIME will set the time of the
whole host, not just container.

In general, if the resource is not namespaced by the Linux kernel, it
is global and can be affected by the container.

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

References

Book: Operating Systems: Three easy pieces.
Linux and OpenBSD man pages for specific syscals /
protection mechanisms.

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

Muddiests point

Håkon Robbestad Gylterud
INF226 – Software Security



Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

Next week

Read the article Preventing Priviledge Escalation (link on Syllabus
on MittUiB).

Discusses in depth how priviledge separation is done in
OpenSSH, zlib and several other programs.

Then we will discuss authentication.

Håkon Robbestad Gylterud
INF226 – Software Security

http://www.citi.umich.edu/u/provos/papers/privsep.pdf


Recap: Access control models Operating system and application security Memory protection File system abstraction System call restrictions OS virtualisation

Exercise for Monday

Read the article Preventing Priviledge Escalation, and answer the
questions:

1 Which operating system mechanisms does this approach to
priviledge separation rely upon?

2 Why does the slave process have to restart when going from
pre-authentication phase to post-authentication phase?

3 What does the P_SUGID flag do?

Håkon Robbestad Gylterud
INF226 – Software Security


	Recap: Access control models
	Operating system and application security
	Memory protection
	File system abstraction
	System call restrictions
	OS virtualisation

