INF226 — Software Security

Hakon Robbestad Gylterud

2019-09-18

Hakon Robbestad Gylterud

INF226 — Software Security

Authentication
®0

Authentication

Hakon Robbestad Gylterud

INF226 — Software Security

Authentication
oe

Authentication

Authentication is the act of verifying the identity of actors in the
system.

Hakon Robbestad Gylterud

INF226 — Software Security

Authentication
oe

Authentication

Authentication is the act of verifying the identity of actors in the
system.

A is communicating with B. (Un authenticated)
A knows that they are communicating with B. (Authenticated)

Hakon Robbestad Gylterud

INF226 — Software Security

Authentication Pz fac ey cryptography and authenticatio

oe

Authentication

Authentication is the act of verifying the identity of actors in the
system.

A is communicating with B. (Un authenticated)
A knows that they are communicating with B. (Authenticated)

m Certificates issued by a Certificate Authority (CA)
authenticates websites visted over HTTPS by the browser.
m Passwords authenticate the user when logging in to a

computer.
m A shibboleth authenticates a member of a group, in social

settings.

Hakon Robbestad Gylterud

INF226 — Software Security

Passwords
©000

Passwords

Hakon Robbestad Gylterud

INF226 — Software Security

Passwords
000

Passwords

What are the pros and cons of passwords as an authentication
mechanism?

Hakon Robbestad Gylterud

INF226 — Software Security

Passwords
000

Passwords

What are the pros and cons of passwords as an authentication
mechanism?

What were Dr. Cranor’s conclusions?

Hakon Robbestad Gylterud

INF226 — Software Security

Passwords
0000

Password alphabet size vs. password length

A quick “back of the napkin” calculation shows that there is not
much to gain by increasing the size alphabet:

m Incresing the alphabet is equivalent to increasing the length by
a constant factor which grows logarithmically in the size in the
size of the alphabet.

BUT: There is also no reason to make artificial restrictions on what
character's the users are allowed to use.

Hakon Robbestad Gylterud

INF226 — Software Security

NIST guidelines for passwords

The complicated requirements mentioned by Dr. Cranor have been
deprecated in the latest guidelines, in favour of a more simpler:

m Require a minimum password length.

m The minimum length requirement must be 8 characters or
greater.

m Allow at least 64 characters.

m Check against a list of known bad passwords. For instance:

m Dictionary words.

Repetitive or sequential characters (e.g. ‘aaaaaa’, '1234abcd’).
Context-specific words, such as the name of the service, the
username, and derivatives thereof.

m Passwords obtained from previous breach corpuses.

Hakon Robbestad Gylterud

INF226 — Software Security

Storing passwords
©000000000000000

Storing passwords

Hakon Robbestad Gylterud

INF226 — Software Security

Storing passwords
0®00000000000000

Have | been pwned?

https://haveibeenpwned.com/

Hakon Robbestad Gylterud

INF226 — Software Security

Cryptographic hash functions

foobar — aec070645fe...
foobat — c7f0f45765Db...

Requirements of a cryptographic hash function

m One-way: Given y, difficult to find x such that h(x) = y.
m Collision free: Difficult to find x and x’ such that

h(x) = h(x").
m A small change in input yield a large difference in output.
m Quick to compute.

Hakon Robbestad Gylterud

INF226 — Software Security

Cryptographic hash functions

foobar — aec070645fe...
foobat — c7f0f45765Db...

Requirements of a cryptographic hash function

m One-way: Given y, difficult to find x such that h(x) = y.
m Collision free: Difficult to find x and x’ such that

h(x) = h(x").
m A small change in input yield a large difference in output.
m Quick to compute.

Examples:

m MD5, and SHA1 has known collisions
m SHA256/512 and SHA3 has no known collisions

Hakon Robbestad Gylterud

INF226 — Software Security

Storing passwords
000®000000000000

Uses of hash functions

Checksumming transferred data

Data identifier

Hashing passwords

Signature generation /verification
Building other cryptographic primitives

Hakon Robbestad Gylterud

INF226 — Software Security

Storing passwords
0000@00000000000

Hashing passwords

Easy (but not recommended) way to verify passwords without
storing the password itself:

m Given password x, store h(x).
m When the user logs in with password y, check that h(y) = h(x)
and conclude x = y.

If the application database is leaked, only hashes of passwords are
disclosed.

Issues with this strategy?

Hakon Robbestad Gylterud

INF226 — Software Security

Storing passwords
00000®0000000000

Issues with hashing password

m If same password is reused, hashes will be the same.

m Hashes can be computed efficiently for a dictionary of
passwords.

m An attacker can use the hash to brute force the password

Hakon Robbestad Gylterud

INF226 — Software Security

Storing passwords
000000®000000000

Rainbow tables

Rainbow tables refers to a time—space-tradeoff when creating a
lookup table for hash values — plaintext.

Expositions:

m https://en.wikipedia.org/wiki/Rainbow_table
m http://kestas.kuliukas.com/RainbowTables/

Hakon Robbestad Gylterud

INF226 — Software Security

Storing passwords
0000000800000000

Salting

Efficient solution to make rainbow tables / hash dictionaries
infeasible.

In stead of storing h(x), generate a random byte-string s and store
s, h(h(x) & s).

Hakon Robbestad Gylterud

INF226 — Software Security

Storing passwords
00000000®0000000

How much salt?

Contemporary unix-like systems use 128-bits salts.

Salting does not help against a brute-force attack on a single
password.

Hakon Robbestad Gylterud

INF226 — Software Security

Storing passwords
0000000008000000

Key derivation functions

Fact of life: Users chose passwords with low entropy.
Idea: What if we made computing the hash really expensive?

If each attempt as guessing is expensive, it will be more difficult to
guess the password.

Hakon Robbestad Gylterud

INF226 — Software Security

Storing passwords
0000000000®00000

Key derivation functions

Requirements for key derivation functions:

One-way

Collision free

A small change in input yield a large difference in output.
CPU intensive

Memory expensive

Sequential (difficult to parallelize)

Hakon Robbestad Gylterud

INF226 — Software Security

Storing passwords
0000000000080000

A naive key derivation scheme

In stead of storing h(x), generate two random byte-strings s; and s
and store si, h(h(h(x) ® s2) @ s1).

Now both an attacker and a legitimate login function must guess s,.
The length of s, works as a cost parameter. s; is just regular salt.

Problem with this approach?

Hakon Robbestad Gylterud

INF226 — Software Security

Storing passwords
0000000000008000

SCrypt

Introduced by Colin Percival in 2009, for his Tarsnap back-up
service.

Sources:

m RFC 7914
m https://www.tarsnap.com/scrypt.html

(Compare to Argon2)

Hakon Robbestad Gylterud

INF226 — Software Security

Storing passwords
0000000000000e00

SCrypt

The previous key derivation scheme is trivially computed in parallel,
at no additional memory cost.

SCrypt is a key derivation function which is maximally memory
hard.

However, its use in crypto-currencies means that there has been
developed quite fast specialized circuits for scrypt.

Hakon Robbestad Gylterud

INF226 — Software Security

Storing passwords
0000000000000080

SCrypt

Parameters:

m r block size parameter
m N CPU/Memory cost parameter (a power of two)
m p parallelism parameter (affects CPU cost, not memory)

Hakon Robbestad Gylterud

INF226 — Software Security

Storing passwords
000000000000000e

Other password guessing prevention measures

m Rate-limiting password attempts
m Proof-of-work form the client

Hakon Robbestad Gylterud

INF226 — Software Security

Two-factor authentication
©000

Two-factor authentication

Hakon Robbestad Gylterud

INF226 — Software Security

Two-factor authentication
0000

Two-factor authentication

The idea: Introduce an additional authentication mechanisms in
addition to passwords.

Hakon Robbestad Gylterud

INF226 — Software Security

Two-factor authentication
0000

Two-factor authentication

The idea: Introduce an additional authentication mechanisms in
addition to passwords.

Examples:

m SMS codes (considered insecure: Example Reddit developers
hacked via SMS intercept)

m Print-out with one-time codes.

m A device with time-based, one-time passwords (TOTP)

m Approval from an already authenticated device (Example:
Keybase)

m Public key cryptography (U2F / FIDO , WebAuthn).

Hakon Robbestad Gylterud

INF226 — Software Security

Two-factor authentication
0000

Two-factor authentication

Current status:

m More and more services use multiple factors.

m Many two-factor systems vulnereable to phishing — malicious
proxy attacks (Modlishka is one such proxy).

m Public-key systems integrated with the browser can (in theory)
prevent proxy attack.

m WebAuthn is a new (March 2019) W3C standard.

Hakon Robbestad Gylterud

INF226 — Software Security

https://github.com/drk1wi/Modlishka

Two-factor authentication
felelel)

Password recovery

What about when the user forgets their password? Or looses their
second factor?

Hakon Robbestad Gylterud

INF226 — Software Security

Public key cryptography and authentication
[JeJelelele)

Public key cryptography and authentication

Hakon Robbestad Gylterud

INF226 — Software Security

Public key cryptography and authentication
0®0000

Public key cryptography

Alice Bob

1. Generate key-pair: Public communication
channel
2. Exchange public keys: H

3. Compute shared secret: Siap) SiaB)

Figure 1: Public key cryptography

Hakon Robbestad Gylterud
INF226 — Software Security

Public key cryptography and authentication
00®000
Man-in-the-middle attacks
Eve Bob
Pe

1. Generate key-pair:

2. Exchange public keys:

3. Compute shared secret:

Figure 2: Public key cryptography

Hakon Robbestad Gylterud
INF226 — Software Security

Public key cryptography and authentication
00000

Trust upon first use

Assumption: The man in the middle does not strike the first time.

Hakon Robbestad Gylterud

INF226 — Software Security

Public key cryptography and authentication
00000

Trust upon first use

Assumption: The man in the middle does not strike the first time.

Mechanism: Trust the public key used in first session. Use that for
authentication of later sessions.

Hakon Robbestad Gylterud

INF226 — Software Security

Public key cryptography and authentication
00000

Trust upon first use

Assumption: The man in the middle does not strike the first time.

Mechanism: Trust the public key used in first session. Use that for
authentication of later sessions.

Works well for long-lasting trust-relationships. Or when no existing
trust relationship exists (i.e. web-site registration).

Hakon Robbestad Gylterud

INF226 — Software Security

Public key cryptography and authentication
000000

Centralized Certificate Authorities

Assumption: We trust a central authority to verfiy public keys for us.

Mechanims: Central authority verifies identity and issues certificates
on public keys.

Examples:

m Browsers ship with a list of public keys of trusted Certificate
Authorities.

m Organsations can distribute their own certificates for internal
use.

Hakon Robbestad Gylterud

INF226 — Software Security

Public key cryptography and authentication
00000e

Other schemes

For peer-to-peer authentication:

m one can use preexisting shared secrets (Example: Socialist
Millionaire protocol)
m out-of-band communication (verfication of key fingerprints)

Hakon Robbestad Gylterud

INF226 — Software Security

Logge
[JeleYele

Logged in, and then what?

Hakon Robbestad Gylterud

INF226 — Software Security

Logge
0@00C

Logged in, and then what?

m User actions are often given in separate requests from the
authentication request.
m How do we ensure that each request comes from a valid user?

Hakon Robbestad Gylterud

INF226 — Software Security

Logge
00@0C

Example: Webmail

/login
m User requests login form, and enters password
/inbox

m User posts login details to the inbox page
m Server responds with inbox, listing messages, after checking
password

/delete?messageid=123

m User requests a message deleted
m How can the server know the user is the same?

Hakon Robbestad Gylterud

INF226 — Software Security

Logge
0008C

Session IDs

The standard way solution is to use a session ID, which identifies
the user in the following session.

Requires:

m Entropy: Session ID must not be guessable (random, 128 bits)
m Secrecy: Session ID must not be leaked:
m HTTPS

m Debugging modes often leak session IDs
m Cross-site-scripting (Cookies: HttpOnly, SameSite).

Hakon Robbestad Gylterud

INF226 — Software Security

Logge
0000

Common pitfall: Lacking entropy

Special care needs to be taken when generating random salts or
secret keys.

m Entropy is a finite resource on any system.
m Not all random number generators are suitable for
cryptographic use.

Use the recommended source of randomness on your system!

Hakon Robbestad Gylterud

INF226 — Software Security

Logge
0000C

java.util.Random

m java.util.Random is a Linear Congruential Generator (LCG).

Using java.util.Random is a very insecure source of
cryptographic randomness:

m By observing only a few bytes of output from an LCG, one can
completely determine the rest of the sequence.

(LCGs are well suited for statistical work and Monte-Carlo
simulations)

Hakon Robbestad Gylterud

INF226 — Software Security

Generating secure random bytes in Java

You can use SecureRandom as a general purpose source of entropy:

import java.security.SecureRandom;

SecureRandom random = new SecureRandom() ;

final byte[] token = new byte[32];
random.nextBytes (token) ;

Hakon Robbestad Gylterud

INF226 — Software Security

Logge
0000C

Generating secure random keys in Java

Different ciphers have different KeyGenerator implementations in
Java. For instance AES:

javax.crypto.KeyGenerator;
javax.crypto.SecretKey;

KeyGenerator keyGen = KeyGenerator.getInstance("AES");
keyGen.init(256); // Specifying the key-size
SecretKey secretKey = keyGen.generateKey() ;

Hakon Robbestad Gylterud

INF226 — Software Security

Logge
0000C

Structure of a user authentication scheme based on
passwords

Provide a way for user to authenticate server (ex: HTTPS
w/valid certificate)
Establish a secure communication channel (ex: HTTPS)
User transmits password
Server verifies password:
= Salted (128 bit)
m Run through an expensive key derivation function (ex: SCrypt)
Server responds with a secure session 1D
[@ Client program stores session ID as securely as possible

Comments:

m Are there alternatives to sending the password to the server?

= Tuin fFartar viAanld ha hAav+ar
Hakon Robbestad Gylterud

INF226 — Software Security

	Authentication
	Passwords
	Storing passwords
	Two-factor authentication
	Public key cryptography and authentication
	Logged in, and then what?

