INF226 — Software Security

Hakon Robbestad Gylterud

2019-09-23

Hakon Robbestad Gylterud

INF226 — Software Security



The world wide web
©000000

The world wide web

Hakon Robbestad Gylterud

INF226 — Software Security



The world wide web
0000000

The internet and the web

What happens when we open the browser and type in
“www.uib.no"?

Hakon Robbestad Gylterud

INF226 — Software Security



The world wide web
00®0000

Web protocols, formats and languages

Communication on the world wide web (WWW):

m Domain Name Service (DNS)
m Hyper Text Transfer Protocol (HTTP)
m Uniform Resource Identifier (URI)

Hakon Robbestad Gylterud

INF226 — Software Security



The world wide web
000®000

Browsers

Perform HTTP requests on behalf of the users.
Display pages in Hypertext Markup Language (HTML)
containing:

= Images (JPEG, GIF, SVG, PNG, - --)

m Video and sound (MP3,MP4,0GG,webm, ---)

Style the pages as described in Cascade Style Sheet (CSS).
Executes JavaScript embedded in the pages.

Hakon Robbestad Gylterud

INF226 — Software Security



The world wide web
0000800

Web-servers

Web-servers respond to HT TP requests.

m Static websites vs dynamic web sites.
m Dynamic: Any language can be used on the server side.

Hakon Robbestad Gylterud

INF226 — Software Security



HTTP requests

GET is the most common requeet type. It fetches a resource at a
specific URI.

HEAD fetches only the headers for the specified resource.

POST Posts content to a specified resource.

Hakon Robbestad Gylterud

INF226 — Software Security



HTTP requests

GET is the most common requeet type. It fetches a resource at a
specific URI.

HEAD fetches only the headers for the specified resource.
POST Posts content to a specified resource.
Each request contains headers which specify meta-data about the

request:

Accepted formats/languages
Cookies

User agent

ETag

Hakon Robbestad Gylterud

INF226 — Software Security



The world wide web
0000000

HTTP responses

The server responds with:

m a status message (200, 404, 500 etc ...)
m headers
m (possibly) the content of requested resource

Hakon Robbestad Gylterud

INF226 — Software Security



Public key cryptography and authentication
©0000000

Public key cryptography and authentication

Hakon Robbestad Gylterud

INF226 — Software Security



Public key cryptography and authentication
0®000000

Public key cryptography

Alice Bob

1. Generate key-pair: Public communication
channel
2. Exchange public keys: H

3. Compute shared secret: Siap) SiaB)

Figure 1. Public key cryptography

Hakon Robbestad Gylterud
INF226 — Software Security




Public key cryptography and authentication
00®00000

Usage of public key systems

m Encryption
m Messsage authentication codes
m Certificates

Hakon Robbestad Gylterud

INF226 — Software Security



Public key cryptography and authentication

[e]e]e] le]elele)

Man-in-the-middle attacks

1. Generate key-pair:

2. Exchange public keys:

3. Compute shared secret:

Hakon Robbestad Gylterud
INF226 — Software Security

Bob

Figure 2: Public key cryptography




Public key cryptography and authentication
0000®000

Authentication for public key systems

Public keys must be authenticated.

Hakon Robbestad Gylterud

INF226 — Software Security



Public key cryptography and authentication
0000®000

Authentication for public key systems

Public keys must be authenticated.
Many different schemes for this:
Web-of-trust (key-signing)

Trust upon first use
Centralised certificate authorities

Hakon Robbestad Gylterud

INF226 — Software Security



Public key cryptography and authentication
00000800

Trust upon first use

Assumption: The man in the middle does not strike the first time.

Hakon Robbestad Gylterud

INF226 — Software Security



Public key cryptography and authentication
00000800

Trust upon first use

Assumption: The man in the middle does not strike the first time.

Mechanism: Trust the public key used in first session. Use that for
authentication of later sessions.

Hakon Robbestad Gylterud

INF226 — Software Security



Public key cryptography and authentication
00000800

Trust upon first use

Assumption: The man in the middle does not strike the first time.

Mechanism: Trust the public key used in first session. Use that for
authentication of later sessions.

Works well for long-lasting trust-relationships. Or when no existing
trust relationship exists (i.e. web-site registration).

Example: SSH key trust.

Hakon Robbestad Gylterud

INF226 — Software Security



Public key cryptography and authentication
00000080

Centralized Certificate Authorities

Assumption: We trust a central authority to verfiy public keys for us.

Mechanims: Central authority verifies identity and issues certificates
on public keys.

Examples:

m Browsers ship with a list of public keys of trusted Certificate
Authorities.

m Organsations can distribute their own certificates for internal
use.

Hakon Robbestad Gylterud

INF226 — Software Security



Public key cryptography and authentication
0000000e

Other schemes

For peer-to-peer authentication:

m one can use preexisting shared secrets (Example: Socialist
Millionaire protocol)
m out-of-band communication (verfication of key fingerprints)

Hakon Robbestad Gylterud

INF226 — Software Security



Stream ciphers and Message Authentication Codes
©0000000000

Stream ciphers and Message Authentication
Codes

Hakon Robbestad Gylterud

INF226 — Software Security



Stream ciphers and Message Authentication Codes
0®000000000

Stream ciphers

Most modern cryptography is based on block ciphers.

m Fixed input and output length (for instance: 128 bits)
m Deterministic: Same key and input gives same output.

Hakon Robbestad Gylterud

INF226 — Software Security



Stream ciphers and Message Authentication Codes
0®000000000

Stream ciphers

Most modern cryptography is based on block ciphers.

m Fixed input and output length (for instance: 128 bits)
m Deterministic: Same key and input gives same output.

Problem: Most applications have variable length input/output.

Hakon Robbestad Gylterud

INF226 — Software Security



Stream ciphers and Message Auther

[©] 00000000

ECB

Hakon Robbestad Gylterud

INF226 — Software Se



Stream ciphers and Message Authentication Codes
000@0000000

Stream ciphers

Stream ciphers

Seed = key |[—— Crypto RNG —— Pseudo random stream

Cipher stream g

Plaintext data stream

Figure 4: Stream ciphers

Hakon Robbestad Gylterud

INF226 — Software Security



Stream ciphers and Message Authentication Codes
0000®000000

Stream ciphers are mallable

Stream ciphers:

m based on cryptographic pseudo-random number generators
(CPRNGs)
m provides safe extension to arbitrary inputs

BUT: They are mallable!

Hakon Robbestad Gylterud

INF226 — Software Security



Stream ciphers and Message Authentication Codes
00000@00000

Keyed hash functions

Message Authentication
Codes

Key Message

Keyed hash func.

MAC

Hakon Robbestad Gylterud

INF226 — Software Security



Stream ciphers and Message Authentication Codes
00000080000

Keyed hash functions

A keyed hash function produces a hash, which depends on the key.

m Used to authenticate messages:

m Derive a key from shared secret.
m Sender: Computes keyed hash of encrypted message and attach

has.
B Receiver: Computes keyed hash received message and compare

with attached hash.

m Provides both authenticity and integrity.

Hakon Robbestad Gylterud

INF226 — Software Security



c key cryptography and authentication Stream ciphers and Message Authentication Codes d in, an

00000008000

Keyed hash functions

Message structure

MAC IV Encrypted message

Figure 6: Keyed hash function

Question: Why is it important to encrypt first, not last?

Hakon Robbestad Gylterud

INF226 — Software Security



Stream ciphers and Message Authentication Codes
00000000800

TLS

Transport Layer Security (TLS) are protocols providing
communication security.

m Current version (TLS 1.3)
m Previous versions include weak ciphers.
m Provides:

m Confidentiality

m Authentication (Via X.509 certificates)
m Forward secrecy

If you need cryptographic transport security: use TLS 1.3.

Hakon Robbestad Gylterud

INF226 — Software Security



Stream ciphers and Message Authentication Codes
00000000080

Ciphers in TLS 1.3

TLS version 1.3 has drastically reduced the number of supported
ciphers:

m AES in counter mode and CBC-MAC
m ChaCha20 and Poly1305 MAC

No more DES or RC4.

Hakon Robbestad Gylterud

INF226 — Software Security



Stream ciphers and Message Authentication Codes
00000000000

HTTPS

HTTP can be transmitted over TLS (HTTPS). Authentication
provided by Certificate Authorities (such as Let's Encrypt):

m Same-origin protocol separates HTTP from HTTPS.
m Many sites still serve content over plaintext HTTP.

Hakon Robbestad Gylterud

INF226 — Software Security



Logged in, a
©00000000

Logged in, and then what?

Hakon Robbestad Gylterud

INF226 — Software Security



Logged in, a
0®0000000

Logged in, and then what?

m User actions are often given in separate requests from the
authentication request.
m How do we ensure that each request comes from a valid user?

Hakon Robbestad Gylterud

INF226 — Software Security



Logged in, a
00®000000

Example: Webmail

/login
m User requests login form, and enters password
/inbox

m User posts login details to the inbox page
m Server responds with inbox, listing messages, after checking
password

/delete?messageid=123

m User requests a message deleted
m How can the server know the user is the same?

Hakon Robbestad Gylterud

INF226 — Software Security



Logged in, a
000®00000

Session IDs

The standard way solution is to use a session ID, which identifies
the user in the following session.

Requires:

m Entropy: Session ID must not be guessable (random, 128 bits)
m Secrecy: Session ID must not be leaked:
m HTTPS

m Debugging modes often leak session IDs
m Cross-site-scripting (Cookies: HttpOnly, SameSite).

Hakon Robbestad Gylterud

INF226 — Software Security



Logged in, a
0000®0000

Common pitfall: Lacking entropy

Special care needs to be taken when generating random salts or
secret keys.

m Entropy is a finite resource on any system.
m Not all random number generators are suitable for
cryptographic use.

Use the recommended source of randomness on your system!

Hakon Robbestad Gylterud

INF226 — Software Security



Logged in, a
000008000

java.util.Random

m java.util.Random is a Linear Congruential Generator (LCG).

Using java.util.Random is a very insecure source of
cryptographic randomness:

m By observing only a few bytes of output from an LCG, one can
completely determine the rest of the sequence.

(LCGs are well suited for statistical work and Monte-Carlo
simulations)

Hakon Robbestad Gylterud

INF226 — Software Security



Logged in, a
00000000

Generating secure random bytes in Java

You can use SecureRandom as a general purpose source of entropy:

import java.security.SecureRandom;

SecureRandom random = new SecureRandom() ;

final byte[] token = new byte[32];
random.nextBytes (token) ;

Hakon Robbestad Gylterud

INF226 — Software Security



Logged in, a
000000080

Generating secure random keys in Java

Different ciphers have different KeyGenerator implementations in
Java. For instance AES:

javax.crypto.KeyGenerator;
javax.crypto.SecretKey;

KeyGenerator keyGen = KeyGenerator.getInstance("AES");
keyGen.init(256); // Specifying the key-size
SecretKey secretKey = keyGen.generateKey() ;

Hakon Robbestad Gylterud

INF226 — Software Security



Logged in, a
00000000

Structure of a user authentication scheme based on
passwords

Provide a way for user to authenticate server (ex: HTTPS
w/valid certificate)

Establish a secure communication channel (ex: HTTPS)
User transmits password
Server verifies password:
m Salted (128 bit)
m Run through an expensive key derivation function (ex: SCrypt)
Server responds with a secure session |ID
[@ Client program stores session ID as securely as possible

Hakon Robbestad Gylterud
INF226 — Software Security



Logged in, a
00000000

Structure of a user authentication scheme based on
passwords

Provide a way for user to authenticate server (ex: HTTPS
w/valid certificate)

Establish a secure communication channel (ex: HTTPS)
User transmits password
Server verifies password:
m Salted (128 bit)
m Run through an expensive key derivation function (ex: SCrypt)
Server responds with a secure session |ID
[@ Client program stores session ID as securely as possible

m Are there alternatives to sending the password to the server?
m Two-factor would be better.

Hakon Robbestad Gylterud
INF226 — Software Security



	The world wide web
	Public key cryptography and authentication
	Stream ciphers and Message Authentication Codes
	Logged in, and then what?

