
The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

INF226 – Software Security

Håkon Robbestad Gylterud

2019–09-23

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

The world wide web

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

The internet and the web

What happens when we open the browser and type in
“www.uib.no”?

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

Web protocols, formats and languages

Communication on the world wide web (WWW):

Domain Name Service (DNS)
Hyper Text Transfer Protocol (HTTP)
Uniform Resource Identifier (URI)

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

Browsers

Perform HTTP requests on behalf of the users.
Display pages in Hypertext Markup Language (HTML)
containing:

Images (JPEG, GIF, SVG, PNG, · · · )
Video and sound (MP3,MP4,OGG,webm, · · · )

Style the pages as described in Cascade Style Sheet (CSS).
Executes JavaScript embedded in the pages.

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

Web-servers

Web-servers respond to HTTP requests.

Static websites vs dynamic web sites.
Dynamic: Any language can be used on the server side.

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

HTTP requests

GET is the most common requeet type. It fetches a resource at a
specific URI.

HEAD fetches only the headers for the specified resource.

POST Posts content to a specified resource.

Each request contains headers which specify meta-data about the
request:

Accepted formats/languages
Cookies
User agent
ETag
. . .

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

HTTP requests

GET is the most common requeet type. It fetches a resource at a
specific URI.

HEAD fetches only the headers for the specified resource.

POST Posts content to a specified resource.

Each request contains headers which specify meta-data about the
request:

Accepted formats/languages
Cookies
User agent
ETag
. . .

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

HTTP responses

The server responds with:

a status message (200, 404, 500 etc . . . )
headers
(possibly) the content of requested resource

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

Public key cryptography and authentication

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

Public key cryptography

Figure 1: Public key cryptography

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

Usage of public key systems

Encryption
Messsage authentication codes
Certificates

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

Man-in-the-middle attacks

Figure 2: Public key cryptography

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

Authentication for public key systems

Public keys must be authenticated.

Many different schemes for this:

Web-of-trust (key-signing)
Trust upon first use
Centralised certificate authorities
· · ·

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

Authentication for public key systems

Public keys must be authenticated.

Many different schemes for this:

Web-of-trust (key-signing)
Trust upon first use
Centralised certificate authorities
· · ·

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

Trust upon first use

Assumption: The man in the middle does not strike the first time.

Mechanism: Trust the public key used in first session. Use that for
authentication of later sessions.

Works well for long-lasting trust-relationships. Or when no existing
trust relationship exists (i.e. web-site registration).

Example: SSH key trust.

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

Trust upon first use

Assumption: The man in the middle does not strike the first time.

Mechanism: Trust the public key used in first session. Use that for
authentication of later sessions.

Works well for long-lasting trust-relationships. Or when no existing
trust relationship exists (i.e. web-site registration).

Example: SSH key trust.

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

Trust upon first use

Assumption: The man in the middle does not strike the first time.

Mechanism: Trust the public key used in first session. Use that for
authentication of later sessions.

Works well for long-lasting trust-relationships. Or when no existing
trust relationship exists (i.e. web-site registration).

Example: SSH key trust.

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

Centralized Certificate Authorities

Assumption: We trust a central authority to verfiy public keys for us.

Mechanims: Central authority verifies identity and issues certificates
on public keys.

Examples:

Browsers ship with a list of public keys of trusted Certificate
Authorities.
Organsations can distribute their own certificates for internal
use.

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

Other schemes

For peer-to-peer authentication:

one can use preexisting shared secrets (Example: Socialist
Millionaire protocol)
out-of-band communication (verfication of key fingerprints)

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

Stream ciphers and Message Authentication
Codes

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

Stream ciphers

Most modern cryptography is based on block ciphers.

Fixed input and output length (for instance: 128 bits)
Deterministic: Same key and input gives same output.

Problem: Most applications have variable length input/output.

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

Stream ciphers

Most modern cryptography is based on block ciphers.

Fixed input and output length (for instance: 128 bits)
Deterministic: Same key and input gives same output.

Problem: Most applications have variable length input/output.

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

ECB

Figure 3: We cannot just apply the cipher to each block!

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

Stream ciphers

Figure 4: Stream ciphers

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

Stream ciphers are mallable

Stream ciphers:

based on cryptographic pseudo-random number generators
(CPRNGs)
provides safe extension to arbitrary inputs

BUT: They are mallable!

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

Keyed hash functions

Figure 5: Keyed hash functionHåkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

Keyed hash functions

A keyed hash function produces a hash, which depends on the key.

Used to authenticate messages:
Derive a key from shared secret.
Sender: Computes keyed hash of encrypted message and attach
has.
Receiver: Computes keyed hash received message and compare
with attached hash.

Provides both authenticity and integrity.

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

Keyed hash functions

Figure 6: Keyed hash function

Question: Why is it important to encrypt first, not last?
Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

TLS

Transport Layer Security (TLS) are protocols providing
communication security.

Current version (TLS 1.3)
Previous versions include weak ciphers.
Provides:

Confidentiality
Authentication (Via X.509 certificates)
Forward secrecy

If you need cryptographic transport security: use TLS 1.3.

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

Ciphers in TLS 1.3

TLS version 1.3 has drastically reduced the number of supported
ciphers:

AES in counter mode and CBC-MAC
ChaCha20 and Poly1305 MAC

No more DES or RC4.

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

HTTPS

HTTP can be transmitted over TLS (HTTPS). Authentication
provided by Certificate Authorities (such as Let’s Encrypt):

Same-origin protocol separates HTTP from HTTPS.
Many sites still serve content over plaintext HTTP.

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

Logged in, and then what?

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

Logged in, and then what?

User actions are often given in separate requests from the
authentication request.
How do we ensure that each request comes from a valid user?

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

Example: Webmail

1 /login

User requests login form, and enters password

2 /inbox

User posts login details to the inbox page
Server responds with inbox, listing messages, after checking
password

3 /delete?messageid=123

User requests a message deleted
How can the server know the user is the same?

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

Session IDs

The standard way solution is to use a session ID, which identifies
the user in the following session.

Requires:

Entropy: Session ID must not be guessable (random, 128 bits)
Secrecy: Session ID must not be leaked:

HTTPS
Debugging modes often leak session IDs
Cross-site-scripting (Cookies: HttpOnly, SameSite).

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

Common pitfall: Lacking entropy

Special care needs to be taken when generating random salts or
secret keys.

Entropy is a finite resource on any system.
Not all random number generators are suitable for
cryptographic use.

Use the recommended source of randomness on your system!

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

java.util.Random

java.util.Random is a Linear Congruential Generator (LCG).

Using java.util.Random is a very insecure source of
cryptographic randomness:

By observing only a few bytes of output from an LCG, one can
completely determine the rest of the sequence.

(LCGs are well suited for statistical work and Monte-Carlo
simulations)

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

Generating secure random bytes in Java

You can use SecureRandom as a general purpose source of entropy:

Code

import java.security.SecureRandom;
· · ·
SecureRandom random = new SecureRandom();

final byte[] token = new byte[32];
random.nextBytes(token);

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

Generating secure random keys in Java

Different ciphers have different KeyGenerator implementations in
Java. For instance AES:

javax.crypto.KeyGenerator;
javax.crypto.SecretKey;
· · ·
KeyGenerator keyGen = KeyGenerator.getInstance("AES");
keyGen.init(256); // Specifying the key-size
SecretKey secretKey = keyGen.generateKey();

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

Structure of a user authentication scheme based on
passwords

1 Provide a way for user to authenticate server (ex: HTTPS
w/valid certificate)

2 Establish a secure communication channel (ex: HTTPS)
3 User transmits password
4 Server verifies password:

Salted (128 bit)
Run through an expensive key derivation function (ex: SCrypt)

5 Server responds with a secure session ID
6 Client program stores session ID as securely as possible

Are there alternatives to sending the password to the server?
Two-factor would be better.

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

Structure of a user authentication scheme based on
passwords

1 Provide a way for user to authenticate server (ex: HTTPS
w/valid certificate)

2 Establish a secure communication channel (ex: HTTPS)
3 User transmits password
4 Server verifies password:

Salted (128 bit)
Run through an expensive key derivation function (ex: SCrypt)

5 Server responds with a secure session ID
6 Client program stores session ID as securely as possible

Are there alternatives to sending the password to the server?
Two-factor would be better.

Håkon Robbestad Gylterud
INF226 – Software Security


	The world wide web
	Public key cryptography and authentication
	Stream ciphers and Message Authentication Codes
	Logged in, and then what?

