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The internet and the web

What happens when we open the browser and type in
“www.uib.no”?
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Web protocols, formats and languages

Communication on the world wide web (WWW):

Domain Name Service (DNS)
Hyper Text Transfer Protocol (HTTP)
Uniform Resource Identifier (URI)
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Browsers

Perform HTTP requests on behalf of the users.
Display pages in Hypertext Markup Language (HTML)
containing:

Images (JPEG, GIF, SVG, PNG, · · · )
Video and sound (MP3,MP4,OGG,webm, · · · )

Style the pages as described in Cascade Style Sheet (CSS).
Executes JavaScript embedded in the pages.
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Web-servers

Web-servers respond to HTTP requests.

Static websites vs dynamic web sites.
Dynamic: Any language can be used on the server side.
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HTTP requests

GET is the most common requeet type. It fetches a resource at a
specific URI.

HEAD fetches only the headers for the specified resource.

POST Posts content to a specified resource.

Each request contains headers which specify meta-data about the
request:

Accepted formats/languages
Cookies
User agent
ETag
. . .
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HTTP responses

The server responds with:

a status message (200, 404, 500 etc . . . )
headers
(possibly) the content of requested resource
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Public key cryptography and authentication
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Public key cryptography

Figure 1: Public key cryptography
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Usage of public key systems

Encryption
Messsage authentication codes
Certificates

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

Man-in-the-middle attacks

Figure 2: Public key cryptography
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Authentication for public key systems

Public keys must be authenticated.

Many different schemes for this:

Web-of-trust (key-signing)
Trust upon first use
Centralised certificate authorities
· · ·
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Trust upon first use

Assumption: The man in the middle does not strike the first time.

Mechanism: Trust the public key used in first session. Use that for
authentication of later sessions.

Works well for long-lasting trust-relationships. Or when no existing
trust relationship exists (i.e. web-site registration).

Example: SSH key trust.
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Centralized Certificate Authorities

Assumption: We trust a central authority to verfiy public keys for us.

Mechanims: Central authority verifies identity and issues certificates
on public keys.

Examples:

Browsers ship with a list of public keys of trusted Certificate
Authorities.
Organsations can distribute their own certificates for internal
use.
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Other schemes

For peer-to-peer authentication:

one can use preexisting shared secrets (Example: Socialist
Millionaire protocol)
out-of-band communication (verfication of key fingerprints)
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Stream ciphers and Message Authentication
Codes
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Stream ciphers

Most modern cryptography is based on block ciphers.

Fixed input and output length (for instance: 128 bits)
Deterministic: Same key and input gives same output.

Problem: Most applications have variable length input/output.
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ECB

Figure 3: We cannot just apply the cipher to each block!
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Stream ciphers

Figure 4: Stream ciphers
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Stream ciphers are mallable

Stream ciphers:

based on cryptographic pseudo-random number generators
(CPRNGs)
provides safe extension to arbitrary inputs

BUT: They are mallable!
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Keyed hash functions

Figure 5: Keyed hash functionHåkon Robbestad Gylterud
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Keyed hash functions

A keyed hash function produces a hash, which depends on the key.

Used to authenticate messages:
Derive a key from shared secret.
Sender: Computes keyed hash of encrypted message and attach
has.
Receiver: Computes keyed hash received message and compare
with attached hash.

Provides both authenticity and integrity.
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Keyed hash functions

Figure 6: Keyed hash function

Question: Why is it important to encrypt first, not last?
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TLS

Transport Layer Security (TLS) are protocols providing
communication security.

Current version (TLS 1.3)
Previous versions include weak ciphers.
Provides:

Confidentiality
Authentication (Via X.509 certificates)
Forward secrecy

If you need cryptographic transport security: use TLS 1.3.
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Ciphers in TLS 1.3

TLS version 1.3 has drastically reduced the number of supported
ciphers:

AES in counter mode and CBC-MAC
ChaCha20 and Poly1305 MAC

No more DES or RC4.
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HTTPS

HTTP can be transmitted over TLS (HTTPS). Authentication
provided by Certificate Authorities (such as Let’s Encrypt):

Same-origin protocol separates HTTP from HTTPS.
Many sites still serve content over plaintext HTTP.

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

Logged in, and then what?
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Logged in, and then what?

User actions are often given in separate requests from the
authentication request.
How do we ensure that each request comes from a valid user?
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Example: Webmail

1 /login

User requests login form, and enters password

2 /inbox

User posts login details to the inbox page
Server responds with inbox, listing messages, after checking
password

3 /delete?messageid=123

User requests a message deleted
How can the server know the user is the same?
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Session IDs

The standard way solution is to use a session ID, which identifies
the user in the following session.

Requires:

Entropy: Session ID must not be guessable (random, 128 bits)
Secrecy: Session ID must not be leaked:

HTTPS
Debugging modes often leak session IDs
Cross-site-scripting (Cookies: HttpOnly, SameSite).
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Common pitfall: Lacking entropy

Special care needs to be taken when generating random salts or
secret keys.

Entropy is a finite resource on any system.
Not all random number generators are suitable for
cryptographic use.

Use the recommended source of randomness on your system!
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java.util.Random

java.util.Random is a Linear Congruential Generator (LCG).

Using java.util.Random is a very insecure source of
cryptographic randomness:

By observing only a few bytes of output from an LCG, one can
completely determine the rest of the sequence.

(LCGs are well suited for statistical work and Monte-Carlo
simulations)
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Generating secure random bytes in Java

You can use SecureRandom as a general purpose source of entropy:

Code

import java.security.SecureRandom;
· · ·
SecureRandom random = new SecureRandom();

final byte[] token = new byte[32];
random.nextBytes(token);
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Generating secure random keys in Java

Different ciphers have different KeyGenerator implementations in
Java. For instance AES:

javax.crypto.KeyGenerator;
javax.crypto.SecretKey;
· · ·
KeyGenerator keyGen = KeyGenerator.getInstance("AES");
keyGen.init(256); // Specifying the key-size
SecretKey secretKey = keyGen.generateKey();

Håkon Robbestad Gylterud
INF226 – Software Security



The world wide web Public key cryptography and authentication Stream ciphers and Message Authentication Codes Logged in, and then what?

Structure of a user authentication scheme based on
passwords

1 Provide a way for user to authenticate server (ex: HTTPS
w/valid certificate)

2 Establish a secure communication channel (ex: HTTPS)
3 User transmits password
4 Server verifies password:

Salted (128 bit)
Run through an expensive key derivation function (ex: SCrypt)

5 Server responds with a secure session ID
6 Client program stores session ID as securely as possible

Are there alternatives to sending the password to the server?
Two-factor would be better.
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