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“but most of all, samy is my hero”

The Samy worm (aka JS.spacehero):

Spread through MySpace profile pages.
Fastest spreading worm ever:

Over one million infected pages within 20 hours!

Mostly harmless.
The worm’s author, Samy Kamkar, was raided by US Secret
Service.
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How did the Samy worm work?

The Samy word was a cross-site scripting worm:

Samy found a way to put JavaScript on his own profile page.

The script spread the worm whenever someone visited an infected
profile page.
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How did the Samy worm work?
MySpace had some protections against this:

Only allow: <a>, <img> and <div>
Strip out any occurance of the word javascript

But: JavaScript in CSS style attributes meant any tag could be
used:

<div style="background:url('javascript:alert(1)')">

And: Browsers will actually also accept java\nscript:

<div style="background:url('java
script:alert(1)')">
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More data could be hidden in other attributes:

<div id="mycode"
expr="alert('hah!')"
style="background:url('javascript:eval(document.all.mycode.expr)')">

The whole code of JS.spacehero, with explaination can be found
here:

https://samy.pl/myspace/tech.html
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Same-origin policy
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Origin

An origin is a triple:

Protocol
Domain
Port number

Example: https://www.uib.no/ gives:

Protocol: https
Hostname: www.uib.no
Port number: 443
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Same-origin policy and

The same-origin policy restricts scripts run in the browser to only
access resources from the same origin.

Example: A script can only access cookies from the same origin.
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Same-origin policy

The following URLs have the same origin:

http://www.geocites.com/bob/index.html
http://www.geocites.com/eve/script.html.
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Cross-site scripting
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Cross-site scripting

Web browsers insulate resources, such as cookies or JavaScript,
from different origins.

Cross-site scripting (XSS) occurs when a web-server unintentionally
serves JavaScript from an attacker to client browsers.

This allows attacker code to access resources from victim server
origin.
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Example

$username = $_GET['username'];
echo '<div class="header"> Welcome, ' . $username . '</div>';

Now username could contain JavaScript which can:

Steal session cookies
Trick the user to give their password by showing fake login
screen
Mine bitcoins
. . .
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Vectors

How does the attacker inject script?

User data from one user visible to another (Example: Samy)
URL variables (There is an example in “Secure and resilient
software development”)
User data from post requests
Evaluating user data in client side script
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XML HttpRequest

var xhttp = new XMLHttpRequest();
xhttp.onreadystatechange = function() {

if (this.readyState == 4 && this.status == 200) {
// Replace the content of "example" element
// with HTML received from reqest:
document.getElementById("example").innerHTML = xhttp.responseText;

}
};
xhttp.open("GET", "newcontent", true);
xhttp.send();
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XML HttpRequest

Scripts can make HTTP requests to the current origin.

This means that once an attacker has injected a script, he can do
anything the user could do:

GET pages
POST forms
· · ·

Example: The Samy worm used POST requests to update the
profile, and add the user samy as a friend.
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XSS prevention strategies
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Filtering input

In general, trying to prevent malicious input is difficult:

Blacklisting is bad security practice.
The disallowed charcters (say, &, <, >, " , ' and /) are quite
common.
Client side checking is easy to circumvent.

Can work for simple things like: usernames or e-mail addresses.
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Escaping output

How to escape data inserted into HTML depends on the context.

These situations must be handled differently:

HTML body <div>DATA</div>
Quoted attributes <div id="DATA"></div>
Unquoted attributes <div id=DATA></div>
Quoted strings in JavaScript: alert('DATA')
CSS attribute values background-color: DATA;
JSON data
· · ·

Implementing the escaping is error prone. DO NOT DO THIS
YOURSELF.
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Escaping output

For a string placed inside an HTML element (example:
<div>DATA</div>), we can do the following substitution:

& → &amp;
< → &lt;
> → &gt;
" → &quot;
' → &#x27;
/ → &#x2F;

Use your web-framework’s well-tested implementation for this.
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The DON’Ts

There are a number of places where one should just avoid inserting
untrusted data.
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Avoid inserting untrusted data in tag names

<NEVER PUT UNTRUSTED DATA HERE... href="/test" />
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Avoid inserting untrusted data in attribute names

<div ...NEVER PUT UNTRUSTED DATA HERE...=test />
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Avoid inserting untrusted data in scripts

<script>...NEVER PUT UNTRUSTED DATA HERE...</script>
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Avoid inserting untrusted data directly in CSS

<style>
...NEVER PUT UNTRUSTED DATA HERE...
</style>
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More gotchas

{ background-url : "javascript:alert(1)"; }
{ text-size: "expression(alert('XSS'))"; }

Read: OWASP XXS cheat sheet
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Text formating

Problem: We want to let the user format their input, but worry
about letting them use HTML because of XSS.

Solutions:

HTML sanitisers (Example: OWASP AntiSamy project)
Using another markup language (Markdown, BBCode) with
safe conversion to HTML.

Markdown allows literal HTML, which must be sanitized.
Many BBCode imlementations do nothing to prevent XSS.

Notice: Even graphical formatting tools must represent the
formatting in some way, and can be just as vulnerable to XSS as
code-based ones.
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CWE-352: Cross-Site Request Forgery (CSRF)
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CWE-352: Cross-Site Request Forgery (CSRF)

Web form, as sent to browser:

<form action="/url/profile.php" method="post">
<input type="text" name="firstname"/>
<input type="text" name="lastname"/>
<br/>
<input type="text" name="email"/>
<input type="submit" name="submit" value="Update"/>

</form>
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Server-side handling:

session_start();
// Check session cookie
if (! session_is_registered("username")) {

echo "invalid session detected!";
[...]
exit;

}
update_profile();

function update_profile {
SendUpdateToDatabase($_SESSION['username']

, $_POST['email']);
[...]

echo "Your profile has been updated.";
}
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Meanwhile on a different website. . .
https://attacker.com/attack/:

<SCRIPT>
function SendAttack () {

form.email = "attacker@example.com";
form.submit();

}
</SCRIPT>

<BODY onload="javascript:SendAttack();">
<form action="http://victim.example.com/profile.php"

id="form" method="post">
<input type="hidden"

name="firstname" value="Funny">
<input type="hidden"

name="lastname" value="Joke">
<br/>
<input type="hidden" name="email">

</form>

What happens if the user visist the attacker’s web-site while logged
in to victim.example.com?
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CRSF prevention: Stored tokens

<form action="/url/profile.php" method="post">
<input type="hidden"

name="csrftoken" value="XolHzuGYZcLw7PQ2qv7WXC1C3dzYyxCg">
<input type="text" name="firstname"/>
<input type="text" name="lastname"/>
<br/>
<input type="text" name="email"/>
<input type="submit" name="submit" value="Update"/>

</form>
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Muddiest point

Answer on mitt.uib.no
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HTTP Strict Transport Security

HTTP Strict Transport Security (HSTS) is a HTTP response
header:

Strict-Transport-Security: max-age=31536000;
includeSubDomains;
preload.

It tells the client to always use HTTPS with this domain.

HSTS can be preloaded into browsers.
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HSTS

HSTS protects against:

User accepting a bad certificate
Downgrade to plaintext HTTP
Old HTTP bookmarks

Note: if your domain is on the preload list, you cannot change back
to HTTP — clients will no longer accept it.
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