
Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

INF226 – Software Security

Håkon Robbestad Gylterud

2019–09-30

Håkon Robbestad Gylterud
INF226 – Software Security

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

Samy

Håkon Robbestad Gylterud
INF226 – Software Security

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

“but most of all, samy is my hero”

The Samy worm (aka JS.spacehero):

Spread through MySpace profile pages.
Fastest spreading worm ever:

Over one million infected pages within 20 hours!

Mostly harmless.
The worm’s author, Samy Kamkar, was raided by US Secret
Service.

Håkon Robbestad Gylterud
INF226 – Software Security

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

How did the Samy worm work?

The Samy word was a cross-site scripting worm:

Samy found a way to put JavaScript on his own profile page.

The script spread the worm whenever someone visited an infected
profile page.

Håkon Robbestad Gylterud
INF226 – Software Security

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

How did the Samy worm work?
MySpace had some protections against this:

Only allow: <a>, and <div>
Strip out any occurance of the word javascript

But: JavaScript in CSS style attributes meant any tag could be
used:

<div style="background:url('javascript:alert(1)')">

And: Browsers will actually also accept java\nscript:

<div style="background:url('java
script:alert(1)')">

Håkon Robbestad Gylterud
INF226 – Software Security

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

How did the Samy worm work?
MySpace had some protections against this:

Only allow: <a>, and <div>
Strip out any occurance of the word javascript

But: JavaScript in CSS style attributes meant any tag could be
used:

<div style="background:url('javascript:alert(1)')">

And: Browsers will actually also accept java\nscript:

<div style="background:url('java
script:alert(1)')">

Håkon Robbestad Gylterud
INF226 – Software Security

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

How did the Samy worm work?
MySpace had some protections against this:

Only allow: <a>, and <div>
Strip out any occurance of the word javascript

But: JavaScript in CSS style attributes meant any tag could be
used:

<div style="background:url('javascript:alert(1)')">

And: Browsers will actually also accept java\nscript:

<div style="background:url('java
script:alert(1)')">

Håkon Robbestad Gylterud
INF226 – Software Security

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

More data could be hidden in other attributes:

<div id="mycode"
expr="alert('hah!')"
style="background:url('javascript:eval(document.all.mycode.expr)')">

The whole code of JS.spacehero, with explaination can be found
here:

https://samy.pl/myspace/tech.html

Håkon Robbestad Gylterud
INF226 – Software Security

https://samy.pl/myspace/tech.html

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

More data could be hidden in other attributes:

<div id="mycode"
expr="alert('hah!')"
style="background:url('javascript:eval(document.all.mycode.expr)')">

The whole code of JS.spacehero, with explaination can be found
here:

https://samy.pl/myspace/tech.html

Håkon Robbestad Gylterud
INF226 – Software Security

https://samy.pl/myspace/tech.html

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

Same-origin policy

Håkon Robbestad Gylterud
INF226 – Software Security

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

Origin

An origin is a triple:

Protocol
Domain
Port number

Example: https://www.uib.no/ gives:

Protocol: https
Hostname: www.uib.no
Port number: 443

Håkon Robbestad Gylterud
INF226 – Software Security

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

Same-origin policy and

The same-origin policy restricts scripts run in the browser to only
access resources from the same origin.

Example: A script can only access cookies from the same origin.

Håkon Robbestad Gylterud
INF226 – Software Security

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

Same-origin policy

The following URLs have the same origin:

http://www.geocites.com/bob/index.html
http://www.geocites.com/eve/script.html.

Håkon Robbestad Gylterud
INF226 – Software Security

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

Cross-site scripting

Håkon Robbestad Gylterud
INF226 – Software Security

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

Cross-site scripting

Web browsers insulate resources, such as cookies or JavaScript,
from different origins.

Cross-site scripting (XSS) occurs when a web-server unintentionally
serves JavaScript from an attacker to client browsers.

This allows attacker code to access resources from victim server
origin.

Håkon Robbestad Gylterud
INF226 – Software Security

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

Example

$username = $_GET['username'];
echo '<div class="header"> Welcome, ' . $username . '</div>';

Now username could contain JavaScript which can:

Steal session cookies
Trick the user to give their password by showing fake login
screen
Mine bitcoins
. . .

Håkon Robbestad Gylterud
INF226 – Software Security

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

Example

$username = $_GET['username'];
echo '<div class="header"> Welcome, ' . $username . '</div>';

Now username could contain JavaScript which can:

Steal session cookies
Trick the user to give their password by showing fake login
screen
Mine bitcoins
. . .

Håkon Robbestad Gylterud
INF226 – Software Security

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

Vectors

How does the attacker inject script?

User data from one user visible to another (Example: Samy)
URL variables (There is an example in “Secure and resilient
software development”)
User data from post requests
Evaluating user data in client side script

Håkon Robbestad Gylterud
INF226 – Software Security

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

XML HttpRequest

var xhttp = new XMLHttpRequest();
xhttp.onreadystatechange = function() {

if (this.readyState == 4 && this.status == 200) {
// Replace the content of "example" element
// with HTML received from reqest:
document.getElementById("example").innerHTML = xhttp.responseText;

}
};
xhttp.open("GET", "newcontent", true);
xhttp.send();

Håkon Robbestad Gylterud
INF226 – Software Security

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

XML HttpRequest

Scripts can make HTTP requests to the current origin.

This means that once an attacker has injected a script, he can do
anything the user could do:

GET pages
POST forms
· · ·

Example: The Samy worm used POST requests to update the
profile, and add the user samy as a friend.

Håkon Robbestad Gylterud
INF226 – Software Security

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

XSS prevention strategies

Håkon Robbestad Gylterud
INF226 – Software Security

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

Filtering input

In general, trying to prevent malicious input is difficult:

Blacklisting is bad security practice.
The disallowed charcters (say, &, <, >, " , ' and /) are quite
common.
Client side checking is easy to circumvent.

Can work for simple things like: usernames or e-mail addresses.

Håkon Robbestad Gylterud
INF226 – Software Security

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

Escaping output

How to escape data inserted into HTML depends on the context.

These situations must be handled differently:

HTML body <div>DATA</div>
Quoted attributes <div id="DATA"></div>
Unquoted attributes <div id=DATA></div>
Quoted strings in JavaScript: alert('DATA')
CSS attribute values background-color: DATA;
JSON data
· · ·

Implementing the escaping is error prone. DO NOT DO THIS
YOURSELF.

Håkon Robbestad Gylterud
INF226 – Software Security

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

Escaping output

For a string placed inside an HTML element (example:
<div>DATA</div>), we can do the following substitution:

& → &
< → <
> → >
" → "
' → '
/ → /

Use your web-framework’s well-tested implementation for this.

Håkon Robbestad Gylterud
INF226 – Software Security

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

The DON’Ts

There are a number of places where one should just avoid inserting
untrusted data.

Håkon Robbestad Gylterud
INF226 – Software Security

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

Avoid inserting untrusted data in tag names

<NEVER PUT UNTRUSTED DATA HERE... href="/test" />

Håkon Robbestad Gylterud
INF226 – Software Security

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

Avoid inserting untrusted data in attribute names

<div ...NEVER PUT UNTRUSTED DATA HERE...=test />

Håkon Robbestad Gylterud
INF226 – Software Security

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

Avoid inserting untrusted data in scripts

<script>...NEVER PUT UNTRUSTED DATA HERE...</script>

Håkon Robbestad Gylterud
INF226 – Software Security

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

Avoid inserting untrusted data directly in CSS

<style>
...NEVER PUT UNTRUSTED DATA HERE...
</style>

Håkon Robbestad Gylterud
INF226 – Software Security

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

More gotchas

{ background-url : "javascript:alert(1)"; }
{ text-size: "expression(alert('XSS'))"; }

Read: OWASP XXS cheat sheet

Håkon Robbestad Gylterud
INF226 – Software Security

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

Text formating

Problem: We want to let the user format their input, but worry
about letting them use HTML because of XSS.

Solutions:

HTML sanitisers (Example: OWASP AntiSamy project)
Using another markup language (Markdown, BBCode) with
safe conversion to HTML.

Markdown allows literal HTML, which must be sanitized.
Many BBCode imlementations do nothing to prevent XSS.

Notice: Even graphical formatting tools must represent the
formatting in some way, and can be just as vulnerable to XSS as
code-based ones.

Håkon Robbestad Gylterud
INF226 – Software Security

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

Text formating

Problem: We want to let the user format their input, but worry
about letting them use HTML because of XSS.

Solutions:

HTML sanitisers (Example: OWASP AntiSamy project)
Using another markup language (Markdown, BBCode) with
safe conversion to HTML.

Markdown allows literal HTML, which must be sanitized.
Many BBCode imlementations do nothing to prevent XSS.

Notice: Even graphical formatting tools must represent the
formatting in some way, and can be just as vulnerable to XSS as
code-based ones.

Håkon Robbestad Gylterud
INF226 – Software Security

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

Text formating

Problem: We want to let the user format their input, but worry
about letting them use HTML because of XSS.

Solutions:

HTML sanitisers (Example: OWASP AntiSamy project)
Using another markup language (Markdown, BBCode) with
safe conversion to HTML.

Markdown allows literal HTML, which must be sanitized.
Many BBCode imlementations do nothing to prevent XSS.

Notice: Even graphical formatting tools must represent the
formatting in some way, and can be just as vulnerable to XSS as
code-based ones.

Håkon Robbestad Gylterud
INF226 – Software Security

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

CWE-352: Cross-Site Request Forgery (CSRF)

Håkon Robbestad Gylterud
INF226 – Software Security

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

CWE-352: Cross-Site Request Forgery (CSRF)

Web form, as sent to browser:

<form action="/url/profile.php" method="post">
<input type="text" name="firstname"/>
<input type="text" name="lastname"/>

<input type="text" name="email"/>
<input type="submit" name="submit" value="Update"/>

</form>

Håkon Robbestad Gylterud
INF226 – Software Security

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

Server-side handling:

session_start();
// Check session cookie
if (! session_is_registered("username")) {

echo "invalid session detected!";
[...]
exit;

}
update_profile();

function update_profile {
SendUpdateToDatabase($_SESSION['username']

, $_POST['email']);
[...]

echo "Your profile has been updated.";
}

Håkon Robbestad Gylterud
INF226 – Software Security

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

Meanwhile on a different website. . .
https://attacker.com/attack/:

<SCRIPT>
function SendAttack () {

form.email = "attacker@example.com";
form.submit();

}
</SCRIPT>

<BODY onload="javascript:SendAttack();">
<form action="http://victim.example.com/profile.php"

id="form" method="post">
<input type="hidden"

name="firstname" value="Funny">
<input type="hidden"

name="lastname" value="Joke">

<input type="hidden" name="email">

</form>

What happens if the user visist the attacker’s web-site while logged
in to victim.example.com?

Håkon Robbestad Gylterud
INF226 – Software Security

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

CRSF prevention: Stored tokens

<form action="/url/profile.php" method="post">
<input type="hidden"

name="csrftoken" value="XolHzuGYZcLw7PQ2qv7WXC1C3dzYyxCg">
<input type="text" name="firstname"/>
<input type="text" name="lastname"/>

<input type="text" name="email"/>
<input type="submit" name="submit" value="Update"/>

</form>

Håkon Robbestad Gylterud
INF226 – Software Security

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

Muddiest point

Answer on mitt.uib.no

Håkon Robbestad Gylterud
INF226 – Software Security

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

HTTP Strict Transport Security

HTTP Strict Transport Security (HSTS) is a HTTP response
header:

Strict-Transport-Security: max-age=31536000;
includeSubDomains;
preload.

It tells the client to always use HTTPS with this domain.

HSTS can be preloaded into browsers.

Håkon Robbestad Gylterud
INF226 – Software Security

https://hstspreload.org/

Samy Same-origin policy Cross-site scripting XSS prevention strategies CWE-352: Cross-Site Request Forgery (CSRF)

HSTS

HSTS protects against:

User accepting a bad certificate
Downgrade to plaintext HTTP
Old HTTP bookmarks

Note: if your domain is on the preload list, you cannot change back
to HTTP — clients will no longer accept it.

Håkon Robbestad Gylterud
INF226 – Software Security

	Samy
	Same-origin policy
	Cross-site scripting
	XSS prevention strategies
	CWE-352: Cross-Site Request Forgery (CSRF)

