INF226 — Software Security

Hakon Robbestad Gylterud

2019-09-30

Hakon Robbestad Gylterud

INF226 — Software Security

Samy
90000

Samy

Hakon Robbestad Gylterud

INF22 Software Security

Samy
(o] Je]e]e]

“but most of all, samy is my hero”

The Samy worm (aka JS.spacehero):

m Spread through MySpace profile pages.
m Fastest spreading worm ever:

m Over one million infected pages within 20 hours!

m Mostly harmless.
m The worm’s author, Samy Kamkar, was raided by US Secret
Service.

Hakon Robbestad Gylterud

INF226 — Software Security

Samy
[e]e] le]e]

How did the Samy worm work?

The Samy word was a cross-site scripting worm:
m Samy found a way to put JavaScript on his own profile page.

The script spread the worm whenever someone visited an infected
profile page.

Hakon Robbestad Gylterud

INF226 — Software Security

How did the Samy worm work?

MySpace had some protections against this:

m Only allow: <a>, and <div>
m Strip out any occurance of the word javascript

Hakon Robbestad Gylterud

INF226 — Software Security

How did the Samy worm work?

MySpace had some protections against this:

m Only allow: <a>, and <div>
m Strip out any occurance of the word javascript

But: JavaScript in CSS style attributes meant any tag could be
used:

<div style="background:url('javascript:alert(1)')">

Hakon Robbestad Gylterud

INF226 — Software Security

How did the Samy worm work?

MySpace had some protections against this:

m Only allow: <a>, and <div>
m Strip out any occurance of the word javascript

But: JavaScript in CSS style attributes meant any tag could be
used:

<div style="background:url('javascript:alert(1)')">
And: Browsers will actually also accept java\nscript:

<div style="background:url('java
script:alert(1)')">

Hakon Robbestad Gylterud

INF226 — Software Security

Samy
[e]e]e]e])

More data could be hidden in other attributes:

<div id="mycode"
expr="alert('hah!')"
style="background:url('javascript:eval(document.all.mycode.expr)')">

Hakon Robbestad Gylterud

INF226 — Software Security

https://samy.pl/myspace/tech.html

Samy
[e]e]e]e])

More data could be hidden in other attributes:

<div id="mycode"
expr="alert('hah!')"
style="background:url('javascript:eval(document.all.mycode.expr)')">

The whole code of JS.spacehero, with explaination can be found
here:

m https://samy.pl/myspace/tech.html

Hakon Robbestad Gylterud
INF226 — Software Security

https://samy.pl/myspace/tech.html

Same-origin policy
[Jele]le}

Same-origin policy

Hakon Robbestad Gylterud

INF226 — Software Security

Same-origin policy
[e] lele}

Origin

An origin is a triple:

m Protocol
m Domain
m Port number

Example: https://www.uib.no/ gives:

m Protocol: https
m Hostname: www.uib.no
m Port number: 443

Hakon Robbestad Gylterud

INF226 — Software Security

Same-origin policy
[e]e] le}

Same-origin policy and

The same-origin policy restricts scripts run in the browser to only
access resources from the same origin.

Example: A script can only access cookies from the same origin.

Hakon Robbestad Gylterud

INF226 — Software Security

Same-origin policy
[e]ele]]

Same-origin policy

The following URLs have the same origin:

m http://www.geocites.com/bob/index.html
m http://www.geocites.com/eve/script.html.

Hakon Robbestad Gylterud

INF226 — Software Security

Cross-site scripting
[JeJelelele)

Cross-site scripting

Hakon Robbestad Gylterud

INF226 — Software Security

Cross-site scripting
000000

Cross-site scripting

Web browsers insulate resources, such as cookies or JavaScript,
from different origins.

Cross-site scripting (XSS) occurs when a web-server unintentionally
serves JavaScript from an attacker to client browsers.

This allows attacker code to access resources from victim server
origin.

Hakon Robbestad Gylterud

INF226 — Software Security

Cross-site scripting
00@000

Example

$username = $_GET['username'];

echo '<div class="header"> Welcome, '

. $username . '</div>';

Hakon Robbestad Gylterud

INF226 — Software Security

Cross-site scripting
00@000

Example

$username = $_GET['username'];
echo '<div class="header"> Welcome, ' . $username . '</div>';

Now username could contain JavaScript which can:

m Steal session cookies
m Trick the user to give their password by showing fake login

screen
m Mine bitcoins
...

Hakon Robbestad Gylterud
INF226 — Software Security

Cross-site scripting
000000

Vectors

How does the attacker inject script?

m User data from one user visible to another (Example: Samy)

m URL variables (There is an example in “Secure and resilient
software development”)

m User data from post requests

m Evaluating user data in client side script

Hakon Robbestad Gylterud

INF226 — Software Security

Cros: e scripting
000000

XML HttpRequest

var xhttp = new XMLHttpRequest();
xhttp.onreadystatechange = function() {
if (this.readyState == 4 && this.status == 200) {
// Replace the content of "example" element
// with HTML received from reqest:
document . getElementById("example") .innerHTML = xhttp.responseText;
¥
s
xhttp.open("GET", "newcontent", true);
xhttp.send();

Hakon Robbestad Gylterud

INF22i Software Security

Cross-site scripting
000000

XML HttpRequest

Scripts can make HTTP requests to the current origin.

This means that once an attacker has injected a script, he can do
anything the user could do:

m GET pages
m POST forms

Example: The Samy worm used POST requests to update the
profile, and add the user samy as a friend.

Hakon Robbestad Gylterud

INF226 — Software Security

XSS prevention strategies
©0000000000

XSS prevention strategies

Hakon Robbestad Gylterud

INF226 — Software Security

XSS prevention strategies
0®000000000

Filtering input

In general, trying to prevent malicious input is difficult:

m Blacklisting is bad security practice.

m The disallowed charcters (say, &, <, >, ", ' and /) are quite
common.

m Client side checking is easy to circumvent.

Can work for simple things like: usernames or e-mail addresses.

Hakon Robbestad Gylterud

INF226 — Software Security

00000000000
Escaping output

How to escape data inserted into HTML depends on the context.

These situations must be handled differently:

m HTML body <div>DATA</div>

m Quoted attributes <div id="DATA"></div>

m Unquoted attributes <div id=DATA></div>

m Quoted strings in JavaScript: alert ('DATA')
CSS attribute values background-color: DATA;
JSON data

Implementing the escaping is error prone. DO NOT DO THIS
YOURSELF.

Hakon Robbestad Gylterud

INF226 — Software Security

[e]e]e] Jelelelelele]e]
Escaping output

For a string placed inside an HTML element (example:
<div>DATA</div>), we can do the following substitution:

& — &
< — <
> — >
" — "
' — '
/ — /

Use your web-framework’s well-tested implementation for this.

Hakon Robbestad Gylterud

INF226 — Software Security

XSS prevention strategies
00008000000

The DON'Ts

There are a number of places where one should just avoid inserting
untrusted data.

Hakon Robbestad Gylterud

INF226 — Software Security

XSS prevention strategies
00000®00000

Avoid inserting untrusted data in tag names

<NEVER PUT UNTRUSTED DATA HERE... href="/test" />

Hakon Robbestad Gylterud

INF226 — Software Security

XSS prevention strategies
00000080000

Avoid inserting untrusted data in attribute names

<div ...NEVER PUT UNTRUSTED DATA HERE...=test />

Hakon Robbestad Gylterud

INF226 — Software Security

XSS prevention strategies
00000008000

Avoid inserting untrusted data in scripts

<script>...NEVER PUT UNTRUSTED DATA HERE...</script>

Hakon Robbestad Gylterud

INF226 — Software Security

XSS prevention strategies
00000000800

Avoid inserting untrusted data directly in CSS

<style>
...NEVER PUT UNTRUSTED DATA HERE...
</style>

Hakon Robbestad Gylterud

INF226 — Software Security

XSS prevention strategies
00000000080

More gotchas

m { background-url : "javascript:alert(1)"; }
m { text-size: "expression(alert('XSS'))"; }

Read: OWASP XXS cheat sheet

Hakon Robbestad Gylterud

INF226 — Software Security

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

0000000000 e
Text formating

Problem: We want to let the user format their input, but worry
about letting them use HTML because of XSS.

Hakon Robbestad Gylterud

INF226 — Software Security

0000000000 e
Text formating

Problem: We want to let the user format their input, but worry
about letting them use HTML because of XSS.

Solutions:

m HTML sanitisers (Example: OWASP AntiSamy project)
m Using another markup language (Markdown, BBCode) with
safe conversion to HTML.

m Markdown allows literal HTML, which must be sanitized.
m Many BBCode imlementations do nothing to prevent XSS.

Hakon Robbestad Gylterud

INF226 — Software Security

0000000000 e
Text formating

Problem: We want to let the user format their input, but worry
about letting them use HTML because of XSS.

Solutions:

m HTML sanitisers (Example: OWASP AntiSamy project)
m Using another markup language (Markdown, BBCode) with
safe conversion to HTML.

m Markdown allows literal HTML, which must be sanitized.
m Many BBCode imlementations do nothing to prevent XSS.

Notice: Even graphical formatting tools must represent the
formatting in some way, and can be just as vulnerable to XSS as
code-based ones.

Hakon Robbestad Gylterud

INF226 — Software Security

CWE-352: Cross-Site Request Forgery (CSRF)
©0000000

CWE-352: Cross-Site Request Forgery (CSRF)

Hakon Robbestad Gylterud

INF226 — Software Security

CWE-352: Cross-Site Request Forgery (CSRF)
0®000000

CWE-352: Cross-Site Request Forgery (CSRF)

Web form, as sent to browser:

<form action="/url/profile.php" method="post">

<input type="text" name="firstname"/>

<input type="text" name="lastname"/>

<input type="text" name="email"/>

<input type="submit" name="submit" value="Update"/>
</form>

Hakon Robbestad Gylterud

INF226 — Software Security

CWE-352: Cross-Site Request Forgery (CSRF)
0000000

Server-side handling:

session_start();

// Check session cookie

if (! session_is_registered("username")) {
echo "invalid session detected!";
[...]
exit;

}

update_profile();

function update_profile {
SendUpdateToDatabase ($_SESSION['username']

, $ POST['email']);
[...]

echo "Your profile has been updated.";

Hakon Robbestad Gylterud
INF226 — Software Security

CWE-352: Cross-Site Request Forgery (CSRF)
00080000

Meanwhile on a different website. . .

https://attacker.com/attack/:

<SCRIPT>
function SendAttack () {
form.email = "attacker@example.com";

form.submit();
}
</SCRIPT>

<BODY onload="javascript:SendAttack();">
<form action="http://victim.example.com/profile.php"
id="form" method="post">
<input type="hidden"
name="firstname" value="Funny">
<input type="hidden"
name="lastname" value="Joke">

<input type="hidden" name="email">
</form>

What happens if the user visist the attacker's web-site while logged
in to victim.example.com?

Hakon Robbestad Gylterud

INF226 — Software Security

CWE-352: Cross-Site Request Forgery (CSRF)
00000000

CRSF prevention: Stored tokens

<form action="/url/profile.php" method="post">

<input type="hidden"

name="csrftoken" value="XolHzuGYZcLw7PQ2qv7WXC1C3dzYyxCg">

<input type="text" name="firstname"/>

<input type="text" name="lastname"/>

<input type="text" name="email"/>

<input type="
</form>

submit" name="submit" value="Update"/>

Hakon Robbestad Gylterud

INF22 Software Security

CWE-352: Cross-Site Request Forgery (CSRF)
00000000

Muddiest point

Answer on mitt.uib.no

Hakon Robbestad Gylterud

INF226 — Software Security

CWE-352: Cross-Site Request Forgery (CSRF)
00000000

HTTP Strict Transport Security

HTTP Strict Transport Security (HSTS) is a HTTP response
header:

Strict-Transport-Security: max-age=31536000;
includeSubDomains;
preload.

It tells the client to always use HTTPS with this domain.

HSTS can be preloaded into browsers.

Hakon Robbestad Gylterud

INF226 — Software Security

https://hstspreload.org/

CWE-352: Cross-Site Request Forgery (CSRF)
00000008

HSTS

HSTS protects against:

m User accepting a bad certificate
m Downgrade to plaintext HTTP
m Old HTTP bookmarks

Note: if your domain is on the preload list, you cannot change back
to HTTP — clients will no longer accept it.

Hakon Robbestad Gylterud

INF226 — Software Security

	Samy
	Same-origin policy
	Cross-site scripting
	XSS prevention strategies
	CWE-352: Cross-Site Request Forgery (CSRF)

