
Capsicum Adapting programs to Capsicum Insecure deserialisation

INF226 – Software Security

Håkon Robbestad Gylterud

2019–10–09

Håkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

Security shepherd demo

Our security shepherd instance: https://shepherd.ii.uib.no/.

Håkon Robbestad Gylterud
INF226 – Software Security

https://shepherd.ii.uib.no/


Capsicum Adapting programs to Capsicum Insecure deserialisation

Last time

We talked about:

Confused deputy
Capability based security

Today:

Capsicum – an implementation of capabilities in FreeBSD
Incorrect deserialisation – an up-and-coming class of
vulnereabilities.

Håkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

Capsicum

Håkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

Priviledge separation

We have previously studied the priviledge separation mechanisms
used by OpenSSH:

Monitor/slave model
Unpriviledged UID/GID
chroot to empty, unwriteable directory
P_SUGID

Håkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

Priviledge separation

Drawbacks:

Chroot requires UID 0.
When transitioning between priviledges data must be serialised.
Relies on shared memory.
Resoning about security requires modelling monitor as a state
machine.
Does not limit network access from slave.

For something more complicated, like a web-browser, this becomes
difficult.

Håkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

Capsicum

Design goals:

Provide capability based security for Unix programs.
Extend, instead of replacing, Unix APIs.
Performance comparable to already employed priviledge
separation mechanisms.

Håkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

Capsicum

Design:

Introduces a special capability mode for processes
Provide new kernel primitives (cap_enter, cap_new, · · · )
Changes existing kernel primitives when in capability mode.
Userspace library (libcapsicum).

Håkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

Capsicum

Figure 1: Capsicum capabilities

Håkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

Capabilities

In capsicum, capabilities are file descriptors along with a set of
access rights.

There are roughly 60 possible access rights for a capability in
capsicum.

A capability is created though cap_new by giving it a file descriptor
and rights mask.

Capabilities are transferred though Inter Process
Communication (IPC) channels, such as sockets.

Håkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

Capabilities

Figure 2: Capsicum capabilities

Håkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

Enforcing capabilities

Capability mode resricts access to global name spaces such as:

Process ID
File paths
POSIX IPC (inter-process communication)
System clocks/timers

In capability mode these resources can only be accessed through
capabilities.

Håkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

Enforcing capabilities

Figure 3: Capsicum capabilitiesHåkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

Restricting existing kernel primitives

In order to enforce these restictions, man kernel primitives must be
changed:

openat(desc,path) opens a file located at relative path from the
directory referenced by file descirptor desc

Example: In capability mode: If 4 refers to /lib then:

openat(4,"libc.so.7") is valid
openat(4,"../etc/passwd") is invalid

In general no “..” allowed in capability mode.

Håkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

Restricting existing kernel primitives

In capability mode, the only valid PID is the process’ own PID.

Child processes (spawned by fork) can be accessed through
capabilities.

(Following the principle of access by creation)

Håkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

Run-time environment

System calls for execution, such as fork, use global name space
through the ELF-header:

The ELF header contains an absolute path to a run-time linker.

libcapsicum contains a special-purpose run-time linker, which
loads libraries through capabilitities.

Håkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

Adapting programs to Capsicum

Håkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

Typical usage of Capsicum

The structure of most programs using capsicum:

1 Obtain resources (using system ambient authorities)
2 Wrap resources in capabilitiets
3 Enter capability mode.
4 Use resources

Observation: Each program uses capabilities in isolation. The
system itself still based on traditional security model.

Håkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

tcpdump
tcpdump outputs descriptions of network packets matching a given
filter.

Question: What vulnerabilities could we expect in such a
program?

The structure of the program lends itself well to priviledge
separation:

Priviledges are aquired early.
Priviledged operations are separate from the messy parsing
of packets.

Minor quirk: DNS resolver relied on file access, and thus had to be
changed to external daemon.

Håkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

tcpdump
tcpdump outputs descriptions of network packets matching a given
filter.

Question: What vulnerabilities could we expect in such a
program?

The structure of the program lends itself well to priviledge
separation:

Priviledges are aquired early.
Priviledged operations are separate from the messy parsing
of packets.

Minor quirk: DNS resolver relied on file access, and thus had to be
changed to external daemon.

Håkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

tcpdump
tcpdump outputs descriptions of network packets matching a given
filter.

Question: What vulnerabilities could we expect in such a
program?

The structure of the program lends itself well to priviledge
separation:

Priviledges are aquired early.
Priviledged operations are separate from the messy parsing
of packets.

Minor quirk: DNS resolver relied on file access, and thus had to be
changed to external daemon.

Håkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

dhclient

dhclient is OpenBSD’s DHCP client. Uses priviledge separation
already.

Hardening this priviledge separation through Capsicum was a
two-line change.

Håkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

gzip

gzip is a command-line file-compession tool.

Question: What kinds of vulnerabilities would you expect in
this program?

Priviledge separation though chroot/unpriviledged UID is a poor
match.

Modifying gzip to use libcapsicum:

Three critical compression functions are put in capability mode.
409 lines added to gzip (16% increase)

Håkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

gzip

gzip is a command-line file-compession tool.

Question: What kinds of vulnerabilities would you expect in
this program?

Priviledge separation though chroot/unpriviledged UID is a poor
match.

Modifying gzip to use libcapsicum:

Three critical compression functions are put in capability mode.
409 lines added to gzip (16% increase)

Håkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

Chromium

Chromium is the open-source sibling of the Chrome web-browser,
developed by Google.

More than 4 million lines of code.
Chromium has integrated sandboxing, with different
implementations on different platforms:

Each tab is a renderer process.
Resources already forwarded through file descriptors.

Before Capsicum, the FreeBSD port of Chrome did not use any
sandboxing.

Håkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

Chromium on different priviledge-separation technologies

Figure 4: Chromuim

Håkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

Insecure deserialisation

Håkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

Serialization

Serialization is the process of turning objects of a programming
language into byte arrays for transport.

Deserialization is the process of turning these byte arrays back
into objects.

Håkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

Serialization

Serialization is the process of turning objects of a programming
language into byte arrays for transport.

Deserialization is the process of turning these byte arrays back
into objects.

Håkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

Serialization

Examples of serialization libraries:

Java serialization
JSON (Multiple language support)
Pickle (Python)
Protocol buffers

Håkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

Incorrect deserialization

The code doing deserialization is at the forefront of the program
security.

Bugs in deserialization can often lead to remote code execution.

Håkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

Pickles

The Pickle Python library is explicitly dangerous:
Warning: The pickle module is not secure against erro-
neous or maliciously constructed data. Never unpickle data
received from an untrusted or unauthenticated source

(The python documentation)

Example exploit:
https://www2.cs.uic.edu/~s/musings/pickle/

Vulnerability on a Facebook server last year:

https://blog.scrt.ch/2018/08/24/
remote-code-execution-on-a-facebook-server/

Håkon Robbestad Gylterud
INF226 – Software Security

https://blog.scrt.ch/2018/08/24/remote-code-execution-on-a-facebook-server/
https://blog.scrt.ch/2018/08/24/remote-code-execution-on-a-facebook-server/


Capsicum Adapting programs to Capsicum Insecure deserialisation

Java serialization

import java.io.Serializable;
public class Person implements Serializable {

private static final long serialVersionUID
= -7181352062979002929L;

private final String name;
private final Integer age;

// · · ·

Håkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

Java serialization

Constructors some times do sanity/security checks:

public Person(String name, Integer age)
throws NegativeAgeException {

this.name = name;
if(age < 0) throw new NegativeAgeException();
this.age=age;

}

Håkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

Java serializaion

Writing an object

Person per = new Person("Per", 50);
ObjectOutputStream oos

= new ObjectOutputStream(
new FileOutputStream("/tmp/person.bin"));

oos.writeObject(per);
oos.flush();
oos.close();

Håkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

Java deserialization

Reading an object:

ObjectInputStream ois
= new ObjectInputStream(

new FileInputStream("/tmp/person.bin"));
Person per = (Person)ois.readObject();
ois.close();
System.out.println(per.getAge());

Håkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

Editing the object before reading:

Figure 5: person.bin
Håkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

Bypassing the sanity check in the constructor

If we change 00 00 00 32 to FF 00 00 32, the reading program
outputs:

-16777166, a negative number!

Håkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

Security holes

For Person this might not lead to a security hole directly.

But what if the constructor is used to escape HTML, or SQL data?

Then we could get XSS or SQL injection vulnerabilities.

Håkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

Security holes

For Person this might not lead to a security hole directly.

But what if the constructor is used to escape HTML, or SQL data?

Then we could get XSS or SQL injection vulnerabilities.

Håkon Robbestad Gylterud
INF226 – Software Security



Capsicum Adapting programs to Capsicum Insecure deserialisation

Java reflection & deserialization

Java has relfection, which gives dynamic method invocation.

Takes a method name string, and argument strings
Applies it to an object

Together with insecure deserialization this gives remote code
execution, when the attacker can alter the method name and
arguments to something malicious.

Some details:

https://www.youtube.com/watch?v=VviY3O-euVQ

Håkon Robbestad Gylterud
INF226 – Software Security

https://www.youtube.com/watch?v=VviY3O-euVQ


Capsicum Adapting programs to Capsicum Insecure deserialisation

Muddiest point

Answer on mitt.uib.no.

Håkon Robbestad Gylterud
INF226 – Software Security


	Capsicum
	Adapting programs to Capsicum
	Insecure deserialisation

