
Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

INF226 – Software Security

Håkon Robbestad Gylterud

2019–10–14

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Security through the software development cycle

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

The software development cycle

1 Requirements
2 Design
3 Implementation
4 Testing
5 Deployment

Question: What security related activities can you think of in each
phase?

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

The software development cycle

1 Requirements
2 Design
3 Implementation
4 Testing
5 Deployment

Question: What security related activities can you think of in each
phase?

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Security activities

The book (“Secure and resilient. . . ”) suggests:

Figure 1: Security activities in the software development cyle

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Software security design

Definition

Software security is the ability of software to function according to
intentions in an adverserial environment.

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Designing secure software

Figure 2: Requirements, assumptions and mechanisms

1 Identify security requirements which capture the intentions
for the software.

2 Make explicit the assumptions about the environment the
software will run.

3 Design mechanisms which satisfy the requirements given the
assumptions.

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Designing secure software

Figure 2: Requirements, assumptions and mechanisms

1 Identify security requirements which capture the intentions
for the software.

2 Make explicit the assumptions about the environment the
software will run.

3 Design mechanisms which satisfy the requirements given the
assumptions.

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Non-functional requirements

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Non-functional requirements

Security and privacy
Availability, capacity, performance and efficiency
Extensiblity, maintainability, portability and scalability
Recoverability
Manageability and serviceablility
Cohesion

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Availability

Definition

Availability is the proportion of time a system spends in a
functional state.
Question: What causes downtime for software?

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Causes for downtime

Malicious attacks
Software bugs
Hardware failure
Failure of services
Exessive usage (exhaution of scarse resources:
CPU/GPU,memory,bandwidth,threads,filehandles,· · · )

Question: How can we increase availabilty?

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Increasing availability

Write secure software.
Not having bugs (How�)
Redundance
Less reliance on services
Testing (Example: Chaos Monkey)
Scalability

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Capacity

Capacity refers to the maximum number simultaneous of
users/transactions.

What is the target capacity of the system?
How do we determine the capacity?
What happens if we reach the limit of capacity?

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Scalability

Scalability is the ability to increase capacity.

Need to identify: What are the bottle-necks?
Running multiple instances:

Load balancing (example: DNS round-robin)
Location
Secure communication between instances
Eventual consistency

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Scalability

Scalability is the ability to increase capacity.
Need to identify: What are the bottle-necks?

Running multiple instances:

Load balancing (example: DNS round-robin)
Location
Secure communication between instances
Eventual consistency

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Scalability

Scalability is the ability to increase capacity.
Need to identify: What are the bottle-necks?
Running multiple instances:

Load balancing (example: DNS round-robin)
Location
Secure communication between instances
Eventual consistency

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Peformance

Performance is:

Responsiveness of the software to users
Rate of transaction processing

This covers both latency and throughput.

What is acceptable performance?
How does performance degrade when approaching the limit of
capacity?

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Peformance

Performance is:

Responsiveness of the software to users
Rate of transaction processing

This covers both latency and throughput.

What is acceptable performance?
How does performance degrade when approaching the limit of
capacity?

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Efficiency

Efficiency is the ability to make use of scarse resources such as:

Memory / cache
Processing power
Storage
Network bandwidth
Latency

Increasing software efficiency gives a better performance/hardware
requirement.

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Maintainability & extensibility

How easy is it to develop and deploy fixes and new features?

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Developing fixes / new features
How easy is it to maintain the code?

Depends on code qualities:

Readability
Structural properties:

Isolation of concerns
Brittleness

Documentation

When multiple fixes/features are developed at the same time:

Merging:
How often?
How to ensure quality?

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Developing fixes / new features
How easy is it to maintain the code?
Depends on code qualities:

Readability
Structural properties:

Isolation of concerns
Brittleness

Documentation

When multiple fixes/features are developed at the same time:

Merging:
How often?
How to ensure quality?

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Developing fixes / new features
How easy is it to maintain the code?
Depends on code qualities:

Readability
Structural properties:

Isolation of concerns
Brittleness

Documentation

When multiple fixes/features are developed at the same time:

Merging:
How often?
How to ensure quality?

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Deploying fixes / new features

How to securely deploy a new version?

Possible attack vector: Malicous updates.

Most modern distribution systems include some signature
mechanisms.

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Deploying fixes / new features

Does upgrading cause disruption?

Downtime?
Can different version coexist?
Portability of persistent data

Serialization is brittle
Use data formats with clear specifications

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Portability

Portability is the ability of the software to run on different systems
with little adaptation.

Language dependent (Assembly vs C vs Java)
Portability favours abstractions
Documentation

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Recoverability

Recoverability is the time to recovery from distruptive events.

Backups
Failover systems (Hardware or virtual)
Update deployment

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Cohesion

Cohesion is the degree to which parts of a system/module belong
together.
Strong cohesion: each module is robust and reusable.
Contrast with coupling, the interdependency between modules.

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Threat model

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

The threat model

Figure 3: Requirements, assumptions and mechanisms

1 Identify security requirements which capture the intentions for
the software.

2 Make explicit the assumptions about the environment
the software will run.

3 Design mechanisms which satisfy the requirements given the
assumptions.

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

The threat model

Figure 3: Requirements, assumptions and mechanisms

1 Identify security requirements which capture the intentions for
the software.

2 Make explicit the assumptions about the environment
the software will run.

3 Design mechanisms which satisfy the requirements given the
assumptions.

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Threat model

What threats (to the defined requirements) can an attack pose?
(STRIDE can be an inspiration)

Which part of the system is likely to be controlled by an attacker?
What motivates an attacker?
What attack vectors can an attacker use?
In order to perform this analysis we need:

Functional decomposistion (A diagram of software components)
An overview of trust-relationships between components
Good knowledge of specific security pitfalls (injection, XSS,
CSRF, authentication, access control, · · · )

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Threat model

What threats (to the defined requirements) can an attack pose?
(STRIDE can be an inspiration)
Which part of the system is likely to be controlled by an attacker?

What motivates an attacker?
What attack vectors can an attacker use?
In order to perform this analysis we need:

Functional decomposistion (A diagram of software components)
An overview of trust-relationships between components
Good knowledge of specific security pitfalls (injection, XSS,
CSRF, authentication, access control, · · · )

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Threat model

What threats (to the defined requirements) can an attack pose?
(STRIDE can be an inspiration)
Which part of the system is likely to be controlled by an attacker?
What motivates an attacker?

What attack vectors can an attacker use?
In order to perform this analysis we need:

Functional decomposistion (A diagram of software components)
An overview of trust-relationships between components
Good knowledge of specific security pitfalls (injection, XSS,
CSRF, authentication, access control, · · · )

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Threat model

What threats (to the defined requirements) can an attack pose?
(STRIDE can be an inspiration)
Which part of the system is likely to be controlled by an attacker?
What motivates an attacker?
What attack vectors can an attacker use?

In order to perform this analysis we need:

Functional decomposistion (A diagram of software components)
An overview of trust-relationships between components
Good knowledge of specific security pitfalls (injection, XSS,
CSRF, authentication, access control, · · · )

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Threat model

What threats (to the defined requirements) can an attack pose?
(STRIDE can be an inspiration)
Which part of the system is likely to be controlled by an attacker?
What motivates an attacker?
What attack vectors can an attacker use?
In order to perform this analysis we need:

Functional decomposistion (A diagram of software components)
An overview of trust-relationships between components
Good knowledge of specific security pitfalls (injection, XSS,
CSRF, authentication, access control, · · · )

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Security review

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Security review

Manual review happens in different phases:

Security design review
Peer review of implementation:

Reviewing commits
Pair programming

Final security review (before deployment)

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Logging

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Developer error messages

Debugging/developer error messages should

be logged to a separate, safe storage.
be append only (enforced by storage mechanism and API)

stdout/stderr are often not good for services, because they are
often redirected to surprising places.

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

What to log

Authentication events
Attempted intrusions
Violations of invariants
Unusual behaviour
Performance statistics

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

What not to log

Not everything should go to the log:

Sensitive information
Keys
Passwords
User data

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Monitoring

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Monitoring

In order to respond to an ongoing threat four things must happen:

1 Detection
2 Logging
3 Monitoring
4 Response

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Example

On a server, a user has an insecure password.

1 An attacker logs in and tries to run sudo, which the user was
not permitted to run.

2 sudo logs the event
3 E-mail automatically sent to administator
4 Admin decides to lock the user account and resett their

password

Why did this succeed?
Question: What (if any) mitigations should be taken after an
event?

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Securing development and deployment

Security is important during development:

An attacker who can modify the source code can make his own
back-doors.
How can we trust third party libraries and APIs?

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Muddest point

Answer at mitt.uib.no

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Language based security

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Language based security

How can the programming language help us avoid bugs?

How should we write code to fully utilise the compiler’s ability to
verify our code?
How to make our intensions visible in the code? (How to write what
to do rather than how to do it)

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Language based security

How can the programming language help us avoid bugs?
How should we write code to fully utilise the compiler’s ability to
verify our code?

How to make our intensions visible in the code? (How to write what
to do rather than how to do it)

Håkon Robbestad Gylterud
INF226 – Software Security



Security through the software development cycle Non-functional requirements Threat model Security review Logging Monitoring Language based security

Language based security

How can the programming language help us avoid bugs?
How should we write code to fully utilise the compiler’s ability to
verify our code?
How to make our intensions visible in the code? (How to write what
to do rather than how to do it)

Håkon Robbestad Gylterud
INF226 – Software Security


	Security through the software development cycle
	Non-functional requirements
	Threat model
	Security review
	Logging
	Monitoring
	Language based security

