
State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

INF226 – Software Security

Håkon Robbestad Gylterud

2019–10–16

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

Warm-up exercise

Is it possible that the following code outputs Bye!?

char[] message = { 'h', 'e', 'l', 'l', 'o'};

someFunction(message);

if (message[0] == 'h')
System.out.println("Hello!");

else
System.out.println("Bye!");

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

Warm-up exercise

What about the following code?

String message = "hello";

someOtherFunction(message);

if (message.equals("hello")
System.out.println("Hello!");

else
System.out.println("Bye!");

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

Immutability

An object is immutable if it cannot be changed after creation.

Example: String is an immutable class in Java.

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

Strings in Java

Why are strings immutable in Java?

Because of string interning:
Every copy of a string is stored only once.

Allows memoization of hashcodes (for say HashMap):
Since the string doesn’t change, we never have to recompute
the hashcode.

Thread safety
Security

Håkon Robbestad Gylterud
INF226 – Software Security

http://en.wikipedia.org/wiki/String_interning


State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

State and immutability

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

Program state

The state of the program consists of:

Variables
File descriptors:

Files
Network connections

Cookies
Client storage

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

Data state vs flow control state

Some state controls the flow of the program:

Example: A variable boolean authenticated controls the flow in
the statement if(authenticated) {} else {}

Some state is just data being passed aroud:

Example: A variable String message is usually inert, unless null.

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

Reasoning about the state of the program

Controlling and reasoning about the state of the program is
essential to security.

Security bugs often happen when a program reaches an
unanticipated state.

Combinatorial explosion: n boolean values have 2n possible states.

(and in Java, n Boolean references have 3n possible states.)

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

Reasoning about the state of the program

Controlling and reasoning about the state of the program is
essential to security.

Security bugs often happen when a program reaches an
unanticipated state.

Combinatorial explosion: n boolean values have 2n possible states.

(and in Java, n Boolean references have 3n possible states.)

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

Reasoning about the state of the program

Controlling and reasoning about the state of the program is
essential to security.

Security bugs often happen when a program reaches an
unanticipated state.

Combinatorial explosion: n boolean values have 2n possible states.

(and in Java, n Boolean references have 3n possible states.)

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

Object orientation and abstraction

An object is the combination of a (hidden) representation and
(visible) interface.

Preservation of invariants: The methods of an object ensure that
the internal state is a valid representation.

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

Object orientation and abstraction

class TimeIntervall {
private Date start;
private Date stop;
public TimeIntervall(Date start,Date stop) {

if(start.compareTo(stop) >= 0)
throw new IllegalArgumentExcecption(

"stop must be after start");
this.start = start;
this.stop = stop;

}

void setStop(Date stop) {
if(start.compareTo(stop) >= 0)

· · ·
}
· · ·

}
Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

The problem of mutation
If you pass reference to a mutable object, you give permission to
mutate the object.

If you receive a reference to a mutable object, you must accept that
it mutates beyond your control:

void outputHTML(Message msg) {
if(isHTMLsafe(msg)) {

response.print(msg);
}

}

If Message is mutable, we cannot know that msg is HTMLsafe!
Thus, we could have a XSS if msg is changed by another thread.

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

The problem of mutation
If you pass reference to a mutable object, you give permission to
mutate the object.

If you receive a reference to a mutable object, you must accept that
it mutates beyond your control:

void outputHTML(Message msg) {
if(isHTMLsafe(msg)) {

response.print(msg);
}

}

If Message is mutable, we cannot know that msg is HTMLsafe!
Thus, we could have a XSS if msg is changed by another thread.

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

The problem of mutation
If you pass reference to a mutable object, you give permission to
mutate the object.

If you receive a reference to a mutable object, you must accept that
it mutates beyond your control:

void outputHTML(Message msg) {
if(isHTMLsafe(msg)) {

response.print(msg);
}

}

If Message is mutable, we cannot know that msg is HTMLsafe!
Thus, we could have a XSS if msg is changed by another thread.

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

Immutable objects

Passing a reference only gives “read access”.
When receiving a reference, you can safely test for invariants
Thread safety for free!

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

Object orientation and abstraction

class TimeIntervall {
private Date start;
private Date stop;
public TimeIntervall(Date start,Date stop) {

if(start.compareTo(stop) >= 0)
throw new IllegalArgumentExcecption(

"stop must be after start");
this.start = start;
this.stop = stop;

}

void setStop(Date stop) {
if(start.compareTo(stop) >= 0)

· · ·
}
· · ·

}
Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

Never Date in Java

The Date class is mostly deprecated and should never be used.

Use java.time.Instant – which is better (and immutable).

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

Never Date in Java

The Date class is mostly deprecated and should never be used.

Use java.time.Instant – which is better (and immutable).

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

Immutability in Java

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

The final keyword

The final keyword for variables mean:

The reference cannot be changed after initialisation.
Any constructor must initialise the field.

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

How to make immutable classes

Declaring all fields final is not enough:

final Date now = new Date();
now.setYear(2000);

Sufficient for:

Strings
primitive types
Immutable classes

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

How to make immutable classes

An immutable class can hide a muteable object by:

Keeping the only reference to this object.
Not modify the object.
Not providing setters.
Declare your class final.

Important any getter for such a hidden object must make a copy of
the object!

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

Example of an immutable class

final class TimeIntervall {
public final Instant start;
public final Instant stop;
public TimeIntervall(Instant start, Instant stop) {

if(start.compareTo(stop) >= 0)
throw new IllegalArgumentExcecption(

"stop must be after start");
this.start = start;
this.stop = stop;

}
}

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

Example of an immutable class

final class TimeIntervall {
public final Instant start;
public final Instant stop;
public TimeIntervall(Instant start, Instant stop) {

if(start.compareTo(stop) >= 0)
throw new IllegalArgumentExcecption(

"stop must be after start");
this.start = start;
this.stop = stop;

}
public TimeIntervall newStop(Instant stop) {

return new TimeIntervall(start, stop);
}

}

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

Type algebra

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

Expressivity

Which types the language can express defines its expressivity.

Different languages have different expressivity
Rich expressivity allows:

more checks to be performed by type-checker
easier to read code
better code reuse

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

Expressivity

Common type formers:

Parameterised types (generics)
Record types/product types
Sum types
Function types
Dependent types

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

An algebra of types

The types we have in programming languages can be seen as an
algebra where:

Multiplication is pairs, tuples, or structs.
Addtion is for types where elements are from disjoint types.
Numerals are represented by finite types. Example: boolean is
2.

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

Example: product type

class Message {
public final String message;
public final Instant timestamp;
public Message(String message, Instant timestamp) {

this.message = message;
this.timestamp = timestamp;

}
}

This type could be written

Message = String × Instant.

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

Example: sum types

data Action = Say { message :: String }
| Sleep { seconds :: Integer }

Here we have Action = String + Integer.

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

Example: sum type

data Weapon = Sword { name :: String,
sharpness :: Float}

| Bow { name :: String
range :: Integer}

Expressed algebraically:

Weapon = String × Float + String × Integer

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

Algebraic laws

Associativity:

A × (B × C) = (A × B) × C

A + (B + C) = (A + B) + C

Commutativity:

A × B = B × A and A + B = B + A

Distributivity:

A × (B + C) = A×B + A×C

For types, these equalities represent refactorizations!

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

Example: Associativity

class A {
public final String x;
public final Float y;

}

class B {
public final A a;
public final Instant b;

}

could be refactored to. . .

class C {
public final Float a;
public final Instant b;

}
class B {

public final String x;
public final C c;

}

(String × Float) × Instant = String × (Float × Instant)

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

Example: Associativity

class A {
public final String x;
public final Float y;

}

class B {
public final A a;
public final Instant b;

}

could be refactored to. . .

class C {
public final Float a;
public final Instant b;

}
class B {

public final String x;
public final C c;

}

(String × Float) × Instant = String × (Float × Instant)

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

Example: Commutativity

class A {
public final String x;
public final Float y;

}

Is the same as. . .

class A {
public final Float y;
public final String x;

}

Float × String = String × Float

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

Example: Commutativity

class A {
public final String x;
public final Float y;

}

Is the same as. . .

class A {
public final Float y;
public final String x;

}

Float × String = String × Float

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

Example: Distributivity

data Weapon = Sword { name :: String,
sharpness :: Float}

| Bow { name :: String
range :: Integer}

Weapon = String × Float + String × Integer
= String × (Float + Integer)

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

Sum types in Java

Any reference in Java can be null.

So every reference behaves like A + 1 (where 1 represent the null
value).

This means that if a class has two fields, say of type A and B, we get

(A + 1)×(B + 1) = A×B + A + B + 1, where A + B occurs!

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

Sum types in Java

Any reference in Java can be null.

So every reference behaves like A + 1 (where 1 represent the null
value).

This means that if a class has two fields, say of type A and B, we get

(A + 1)×(B + 1) = A×B + A + B + 1, where A + B occurs!

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

Sum types in Java

Any reference in Java can be null.

So every reference behaves like A + 1 (where 1 represent the null
value).

This means that if a class has two fields, say of type A and B, we get

(A + 1)×(B + 1) = A×B + A + B + 1, where A + B occurs!

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

Sum types in java

public class Either<A,B> {
private final A left;
private final B right;

private Either(A leftValue, B rightValue) {
this.left = leftValue;
this.right = rightValue;
this.isLeft = isLeft;

}

public static<U,V> Either<U,V> left(U value) {
return new Either<U,V>(value, null);

}

public static<U,V> Either<U,V> right(V value) {
return new Either<U,V>(null, value);

}

. . .

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

Inforum

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

Design overview

Figure 1: High level overviewHåkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

The Maybe type

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

null references

null is often given special meanings by functions or classes:

No element was found (lookup in maps)
No parameter was present (getting parameters from HTTP
requests)
This is a left value, when right is null in Either.

It is very easy to forget null checks.

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

NullPointerExceptions

NullPointerExceptions lead to unexpected control flows:

When the exception is throws, execution races back up the
stack.
Can be caught by catch (Exception · · · ) clauses
. . . or crash the thread / program.

If the program is not written carefully, these unexpected states could
be insecure.

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

null gives a combinatorial explosion of states

(A + 1)×(B + 1)×(C + 1) = A×B×C + A×B + A×C + B×C
+ A + B + C + 1

So, if your class has three fields, there are eight different ways the
field references could be initialised with null!

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

The Maybe class

public class Maybe<T> {
private final T value;

public Maybe(T value) {
this.value = value;

}

public T get() throws NothingException {
if(value == null)

throw new NothingException();
else

return value;
}

. . .
Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

The Storage and Stored types

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

Storage and threading

Requests are processed concurrently.

In order to avoid race conditions, we use version control on object
going into storage. If you loose a race, an exception notifies you and
you can redo with updated objects.

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

The stored class

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

The Storage interface

Håkon Robbestad Gylterud
INF226 – Software Security


	State and immutability
	Immutability in Java
	Type algebra
	Inforum
	The Maybe type
	The Storage and Stored types

