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Warm-up exercise

Is it possible that the following code outputs Bye!?

char[] message = { 'h', 'e', 'l', 'l', 'o'};

someFunction(message);

if (message[0] == 'h')
System.out.println("Hello!");

else
System.out.println("Bye!");
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Warm-up exercise

What about the following code?

String message = "hello";

someOtherFunction(message);

if (message.equals("hello")
System.out.println("Hello!");

else
System.out.println("Bye!");
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Immutability

An object is immutable if it cannot be changed after creation.

Example: String is an immutable class in Java.
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Strings in Java

Why are strings immutable in Java?

Because of string interning:
Every copy of a string is stored only once.

Allows memoization of hashcodes (for say HashMap):
Since the string doesn’t change, we never have to recompute
the hashcode.

Thread safety
Security
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State and immutability
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Program state

The state of the program consists of:

Variables
File descriptors:

Files
Network connections

Cookies
Client storage
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Data state vs flow control state

Some state controls the flow of the program:

Example: A variable boolean authenticated controls the flow in
the statement if(authenticated) {} else {}

Some state is just data being passed aroud:

Example: A variable String message is usually inert, unless null.
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Reasoning about the state of the program

Controlling and reasoning about the state of the program is
essential to security.

Security bugs often happen when a program reaches an
unanticipated state.

Combinatorial explosion: n boolean values have 2n possible states.

(and in Java, n Boolean references have 3n possible states.)
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Object orientation and abstraction

An object is the combination of a (hidden) representation and
(visible) interface.

Preservation of invariants: The methods of an object ensure that
the internal state is a valid representation.
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Object orientation and abstraction

class TimeIntervall {
private Date start;
private Date stop;
public TimeIntervall(Date start,Date stop) {

if(start.compareTo(stop) >= 0)
throw new IllegalArgumentExcecption(

"stop must be after start");
this.start = start;
this.stop = stop;

}

void setStop(Date stop) {
if(start.compareTo(stop) >= 0)

· · ·
}
· · ·

}
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The problem of mutation
If you pass reference to a mutable object, you give permission to
mutate the object.

If you receive a reference to a mutable object, you must accept that
it mutates beyond your control:

void outputHTML(Message msg) {
if(isHTMLsafe(msg)) {

response.print(msg);
}

}

If Message is mutable, we cannot know that msg is HTMLsafe!
Thus, we could have a XSS if msg is changed by another thread.
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Immutable objects

Passing a reference only gives “read access”.
When receiving a reference, you can safely test for invariants
Thread safety for free!
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Object orientation and abstraction

class TimeIntervall {
private Date start;
private Date stop;
public TimeIntervall(Date start,Date stop) {

if(start.compareTo(stop) >= 0)
throw new IllegalArgumentExcecption(

"stop must be after start");
this.start = start;
this.stop = stop;

}

void setStop(Date stop) {
if(start.compareTo(stop) >= 0)

· · ·
}
· · ·

}
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Never Date in Java

The Date class is mostly deprecated and should never be used.

Use java.time.Instant – which is better (and immutable).
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Never Date in Java

The Date class is mostly deprecated and should never be used.
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Immutability in Java
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The final keyword

The final keyword for variables mean:

The reference cannot be changed after initialisation.
Any constructor must initialise the field.
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How to make immutable classes

Declaring all fields final is not enough:

final Date now = new Date();
now.setYear(2000);

Sufficient for:

Strings
primitive types
Immutable classes
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How to make immutable classes

An immutable class can hide a muteable object by:

Keeping the only reference to this object.
Not modify the object.
Not providing setters.
Declare your class final.

Important any getter for such a hidden object must make a copy of
the object!
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Example of an immutable class

final class TimeIntervall {
public final Instant start;
public final Instant stop;
public TimeIntervall(Instant start, Instant stop) {

if(start.compareTo(stop) >= 0)
throw new IllegalArgumentExcecption(

"stop must be after start");
this.start = start;
this.stop = stop;

}
}
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Example of an immutable class

final class TimeIntervall {
public final Instant start;
public final Instant stop;
public TimeIntervall(Instant start, Instant stop) {

if(start.compareTo(stop) >= 0)
throw new IllegalArgumentExcecption(

"stop must be after start");
this.start = start;
this.stop = stop;

}
public TimeIntervall newStop(Instant stop) {

return new TimeIntervall(start, stop);
}

}
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Type algebra
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Expressivity

Which types the language can express defines its expressivity.

Different languages have different expressivity
Rich expressivity allows:

more checks to be performed by type-checker
easier to read code
better code reuse
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Expressivity

Common type formers:

Parameterised types (generics)
Record types/product types
Sum types
Function types
Dependent types
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An algebra of types

The types we have in programming languages can be seen as an
algebra where:

Multiplication is pairs, tuples, or structs.
Addtion is for types where elements are from disjoint types.
Numerals are represented by finite types. Example: boolean is
2.
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Example: product type

class Message {
public final String message;
public final Instant timestamp;
public Message(String message, Instant timestamp) {

this.message = message;
this.timestamp = timestamp;

}
}

This type could be written

Message = String × Instant.
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Example: sum types

data Action = Say { message :: String }
| Sleep { seconds :: Integer }

Here we have Action = String + Integer.
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Example: sum type

data Weapon = Sword { name :: String,
sharpness :: Float}

| Bow { name :: String
range :: Integer}

Expressed algebraically:

Weapon = String × Float + String × Integer
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Algebraic laws

Associativity:

A × (B × C) = (A × B) × C

A + (B + C) = (A + B) + C

Commutativity:

A × B = B × A and A + B = B + A

Distributivity:

A × (B + C) = A×B + A×C

For types, these equalities represent refactorizations!
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Example: Associativity

class A {
public final String x;
public final Float y;

}

class B {
public final A a;
public final Instant b;

}

could be refactored to. . .

class C {
public final Float a;
public final Instant b;

}
class B {

public final String x;
public final C c;

}

(String × Float) × Instant = String × (Float × Instant)
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Example: Commutativity

class A {
public final String x;
public final Float y;

}

Is the same as. . .

class A {
public final Float y;
public final String x;

}

Float × String = String × Float
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Example: Commutativity
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Example: Distributivity

data Weapon = Sword { name :: String,
sharpness :: Float}

| Bow { name :: String
range :: Integer}

Weapon = String × Float + String × Integer
= String × (Float + Integer)
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Sum types in Java

Any reference in Java can be null.

So every reference behaves like A + 1 (where 1 represent the null
value).

This means that if a class has two fields, say of type A and B, we get

(A + 1)×(B + 1) = A×B + A + B + 1, where A + B occurs!
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Sum types in java

public class Either<A,B> {
private final A left;
private final B right;

private Either(A leftValue, B rightValue) {
this.left = leftValue;
this.right = rightValue;
this.isLeft = isLeft;

}

public static<U,V> Either<U,V> left(U value) {
return new Either<U,V>(value, null);

}

public static<U,V> Either<U,V> right(V value) {
return new Either<U,V>(null, value);

}

. . .
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Inforum
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Design overview

Figure 1: High level overviewHåkon Robbestad Gylterud
INF226 – Software Security
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The Maybe type
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null references

null is often given special meanings by functions or classes:

No element was found (lookup in maps)
No parameter was present (getting parameters from HTTP
requests)
This is a left value, when right is null in Either.

It is very easy to forget null checks.
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NullPointerExceptions

NullPointerExceptions lead to unexpected control flows:

When the exception is throws, execution races back up the
stack.
Can be caught by catch (Exception · · · ) clauses
. . . or crash the thread / program.

If the program is not written carefully, these unexpected states could
be insecure.

Håkon Robbestad Gylterud
INF226 – Software Security



State and immutability Immutability in Java Type algebra Inforum The Maybe type The Storage and Stored types

null gives a combinatorial explosion of states

(A + 1)×(B + 1)×(C + 1) = A×B×C + A×B + A×C + B×C
+ A + B + C + 1

So, if your class has three fields, there are eight different ways the
field references could be initialised with null!
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The Maybe class

public class Maybe<T> {
private final T value;

public Maybe(T value) {
this.value = value;

}

public T get() throws NothingException {
if(value == null)

throw new NothingException();
else

return value;
}

. . .
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The Storage and Stored types
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Storage and threading

Requests are processed concurrently.

In order to avoid race conditions, we use version control on object
going into storage. If you loose a race, an exception notifies you and
you can redo with updated objects.
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The stored class
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The Storage interface
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